You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
More than $400 billion worth of products rely on innovations in chemistry. Chemical engineering, as an academic discipline and profession, has enabled this achievement. In response to growing concerns about the future of the discipline, International Benchmarking of U.S. Chemical Engineering Research Competitiveness gauges the standing of the U.S. chemical engineering enterprise in the world. This in-depth benchmarking analysis is based on measures including numbers of published papers, citations, trends in degrees conferred, patent productivity, and awards. The book concludes that the United States is presently, and is expected to remain, among the world's leaders in all subareas of chemical engineering research. However, U.S. leadership in some classical and emerging subareas will be strongly challenged. This critical analysis will be of interest to practicing chemical engineers, professors and students in the discipline, economists, policy makers, major research university administrators, and executives in industries dependent upon innovations in chemistry.
Chemistry plays a key role in conquering diseases, solving energy problems, addressing environmental problems, providing the discoveries that lead to new industries, and developing new materials and technologies for national defense and homeland security. However, the field is currently facing a crucial time of change and is struggling to position itself to meet the needs of the future as it expands beyond its traditional core toward areas related to biology, materials science, and nanotechnology. At the request of the National Science Foundation and the U.S. Department of Energy, the National Research Council conducted an in-depth benchmarking analysis to gauge the current standing of the U.S. chemistry field in the world. The Future of U.S. Chemistry Research: Benchmarks and Challenges highlights the main findings of the benchmarking exercise.
To meet the objectives of the Vision for Space Exploration (VSE), NASA must develop a wide array of enabling technologies. For this purpose, NASA established the Exploration Technology Development Program (ETDP). Currently, ETDP has 22 projects underway. In the report accompanying the House-passed version of the FY2007 appropriations bill, the agency was directed to request from the NRC an independent assessment of the ETDP. This interim report provides an assessment of each of the 22 projects including a quality rating, an analysis of how effectively the research is being carried out, and the degree to which the research is aligned with the VSE. To the extent possible, the identification and discussion of various cross-cutting issues are also presented. Those issues will be explored and discussed in more detail in the final report.
In January 2004, President George W. Bush announced the Vision for Space Exploration (VSE), which instructed NASA to "Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations," among other objectives. As acknowledged in the VSE, significant technology development will be necessary to accomplish the goals it articulates. NASA's Exploration Technology Development Program (ETDP) is designed to support, develop, and ultimately provide the necessary technologies to meet the goals of the VSE. This book, a review of the ETDP, is broadly supportive of the intent and goals of the VSE, and finds the ETDP is making progress towards the stated goals of technology development. However, the ETDP is operating within significant constraints which limit its ability to successfully accomplish those goals-the still dynamic nature of the Constellation Program requirements, the constraints imposed by a limited budget, the aggressive time scale of early technology deliverables, and the desire to fully employ the NASA workforce.
Materials Science and Engineering (MSE) R&D is spreading globally at an accelerating rate. As a result, the relative U.S. position in a number of MSE subfields is in a state of flux. To understand better this trend and its implications for the U.S. economy and national security, the Department of Defense (DOD) asked the NRC to assess the status and impacts of the global spread of MSE R&D. This report presents a discussion of drivers affecting U.S. companies' decisions about location of MSE R&D, an analysis of impacts on the U.S. economy and national security, and recommendations to ensure continued U.S. access to critical MSE R&D.
Identifies and describes specific government assistance opportunities such as loans, grants, counseling, and procurement contracts available under many agencies and programs.