Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

The Calculus of Braids
  • Language: en
  • Pages: 259

The Calculus of Braids

This introduction to braid groups keeps prerequisites to a minimum, while discussing their rich mathematical properties and applications.

Office Hours with a Geometric Group Theorist
  • Language: en
  • Pages: 456

Office Hours with a Geometric Group Theorist

Geometric group theory is the study of the interplay between groups and the spaces they act on, and has its roots in the works of Henri Poincaré, Felix Klein, J.H.C. Whitehead, and Max Dehn. Office Hours with a Geometric Group Theorist brings together leading experts who provide one-on-one instruction on key topics in this exciting and relatively new field of mathematics. It's like having office hours with your most trusted math professors. An essential primer for undergraduates making the leap to graduate work, the book begins with free groups—actions of free groups on trees, algorithmic questions about free groups, the ping-pong lemma, and automorphisms of free groups. It goes on to cov...

Introductory Lectures on Knot Theory
  • Language: en
  • Pages: 577

Introductory Lectures on Knot Theory

More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.

Combinatorial and Geometric Group Theory
  • Language: en
  • Pages: 318

Combinatorial and Geometric Group Theory

This volume assembles several research papers in all areas of geometric and combinatorial group theory originated in the recent conferences in Dortmund and Ottawa in 2007. It contains high quality refereed articles developing new aspects of these modern and active fields in mathematics. It is also appropriate to advanced students interested in recent results at a research level.

Handbook of Set Theory
  • Language: en
  • Pages: 2200

Handbook of Set Theory

Numbers imitate space, which is of such a di?erent nature —Blaise Pascal It is fair to date the study of the foundation of mathematics back to the ancient Greeks. The urge to understand and systematize the mathematics of the time led Euclid to postulate axioms in an early attempt to put geometry on a ?rm footing. With roots in the Elements, the distinctive methodology of mathematics has become proof. Inevitably two questions arise: What are proofs? and What assumptions are proofs based on? The ?rst question, traditionally an internal question of the ?eld of logic, was also wrestled with in antiquity. Aristotle gave his famous syllogistic s- tems, and the Stoics had a nascent propositional ...

Infinity And Truth
  • Language: en
  • Pages: 245

Infinity And Truth

This volume is based on the talks given at the Workshop on Infinity and Truth held at the Institute for Mathematical Sciences, National University of Singapore, from 25 to 29 July 2011. The chapters cover topics in mathematical and philosophical logic that examine various aspects of the foundations of mathematics. The theme of the volume focuses on two basic foundational questions: (i) What is the nature of mathematical truth and how does one resolve questions that are formally unsolvable within the Zermelo-Fraenkel Set Theory with the Axiom of Choice, and (ii) Do the discoveries in mathematics provide evidence favoring one philosophical view over others? These issues are discussed from the vantage point of recent progress in foundational studies.The final chapter features questions proposed by the participants of the Workshop that will drive foundational research. The wide range of topics covered here will be of interest to students, researchers and mathematicians concerned with issues in the foundations of mathematics.

Word Equations and Related Topics
  • Language: en
  • Pages: 228

Word Equations and Related Topics

This volume contains papers presented at the second International Workshop on Word Equations and Related Topics (IWWERT '91), held at the University ofRouen in October 1991. The papers are on the following topics: general solution of word equations, conjugacy in free inverse monoids, general A- and AX-unification via optimized combination procedures, wordequations with two variables, a conjecture about conjugacy in free groups, acase of termination for associative unification, theorem proving by combinatorial optimization, solving string equations with constant restriction, LOP (toward a new implementation of Makanin's algorithm), word unification and transformation of generalizedequations, unification in the combination of disjoint theories, on the subsets of rank two in a free monoid (a fast decision algorithm), and a solution of the complement problem in associative-commutative theories.

Compact Matrix Quantum Groups and Their Combinatorics
  • Language: en
  • Pages: 302

Compact Matrix Quantum Groups and Their Combinatorics

None

The French School of Programming
  • Language: en
  • Pages: 451

The French School of Programming

Zusammenfassung: The French School of Programming is a collection of insightful discussions of programming and software engineering topics, by some of the most prestigious names of French computer science. The authors include several of the originators of such widely acclaimed inventions as abstract interpretation, the Caml, OCaml and Eiffel programming languages, the Coq proof assistant, agents and modern testing techniques. The book is divided into four parts: Software Engineering (A), Programming Language Mechanisms and Type Systems (B), Theory (C), and Language Design and Programming Methodology (D). They are preceded by a Foreword by Bertrand Meyer, the editor of the volume, a Preface b...

Algebras, Lattices, Varieties
  • Language: en
  • Pages: 451

Algebras, Lattices, Varieties

This book is the third of a three-volume set of books on the theory of algebras, a study that provides a consistent framework for understanding algebraic systems, including groups, rings, modules, semigroups and lattices. Volume I, first published in the 1980s, built the foundations of the theory and is considered to be a classic in this field. The long-awaited volumes II and III are now available. Taken together, the three volumes provide a comprehensive picture of the state of art in general algebra today, and serve as a valuable resource for anyone working in the general theory of algebraic systems or in related fields. The two new volumes are arranged around six themes first introduced in Volume I. Volume II covers the Classification of Varieties, Equational Logic, and Rudiments of Model Theory, and Volume III covers Finite Algebras and their Clones, Abstract Clone Theory, and the Commutator. These topics are presented in six chapters with independent expositions, but are linked by themes and motifs that run through all three volumes.