You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is the second of a three-volume set of books on the theory of algebras, a study that provides a consistent framework for understanding algebraic systems, including groups, rings, modules, semigroups and lattices. Volume I, first published in the 1980s, built the foundations of the theory and is considered to be a classic in this field. The long-awaited volumes II and III are now available. Taken together, the three volumes provide a comprehensive picture of the state of art in general algebra today, and serve as a valuable resource for anyone working in the general theory of algebraic systems or in related fields. The two new volumes are arranged around six themes first introduced in Volume I. Volume II covers the Classification of Varieties, Equational Logic, and Rudiments of Model Theory, and Volume III covers Finite Algebras and their Clones, Abstract Clone Theory, and the Commutator. These topics are presented in six chapters with independent expositions, but are linked by themes and motifs that run through all three volumes.
A fundamental question in the theory of discrete and continuous-time population models concerns the conditions for the extinction or persistence of populations – a question that is addressed mathematically by persistence theory. For some time, it has been recognized that if the dynamics of a structured population are mathematically captured by continuous or discrete semiflows and if these semiflows have first-order approximations, the spectral radii of certain bounded linear positive operators (better known as basic reproduction numbers) act as thresholds between population extinction and persistence. This book combines the theory of discrete-time dynamical systems with applications to pop...
It is well known that if two independent identically distributed random variables are Gaussian, then their sum and difference are also independent. It turns out that only Gaussian random variables have such property. This statement, known as the famous Kac-Bernstein theorem, is a typical example of a so-called characterization theorem. Characterization theorems in mathematical statistics are statements in which the description of possible distributions of random variables follows from properties of some functions of these random variables. The first results in this area are associated with famous 20th century mathematicians such as G. Pólya, M. Kac, S. N. Bernstein, and Yu. V. Linnik. By no...
Iwasawa theory began in the late 1950s with a series of papers by Kenkichi Iwasawa on ideal class groups in the cyclotomic tower of number fields and their relation to $p$-adic $L$-functions. The theory was later generalized by putting it in the context of elliptic curves and modular forms. The main motivation for writing this book was the need for a total perspective of Iwasawa theory that includes the new trends of generalized Iwasawa theory. Another motivation of this book is an update of the classical theory for class groups taking into account the changed point of view on Iwasawa theory. The goal of this first part of the two-part publication is to explain the theory of ideal class groups, including its algebraic aspect (the Iwasawa class number formula), its analytic aspect (Leopoldt–Kubota $L$-functions), and the Iwasawa main conjecture, which is a bridge between the algebraic and the analytic aspects. The second part of the book will be published as a separate volume in the same series, Mathematical Surveys and Monographs of the American Mathematical Society.
George Grätzer's Lattice Theory: Foundation is his third book on lattice theory (General Lattice Theory, 1978, second edition, 1998). In 2009, Grätzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey the contemporary field, to pose research problems, would require more than one volume and more than one person. So Lattice Theory: Foundation provided the foundation. Now we complete this project with Lattice Theory: Special Topics and Applications, in two volumes, written by a distinguished group of experts, to cover some of the vast areas not in Foundation. This second volume is divided into ten chapters contributed by K. Adaricheva, N. Caspard, R. Freese, P. Jipsen, J.B. Nation, N. Reading, H. Rose, L. Santocanale, and F. Wehrung.
Residue theory is an active area of complex analysis with connections and applications to fields as diverse as partial differential and integral equations, computer algebra, arithmetic or diophantine geometry, and mathematical physics. Multidimensional Residue Theory and Applications defines and studies multidimensional residues via analytic continuation for holomorphic bundle-valued current maps. This point of view offers versatility and flexibility to the tools and constructions proposed, allowing these residues to be defined and studied outside the classical case of complete intersection. The book goes on to show how these residues are algebraic in nature, and how they relate and apply to...
The Langlands program has been a very active and central field in mathematics ever since its conception over 50 years ago. It connects number theory, representation theory and arithmetic geometry, and other fields in a profound way. There are nevertheless very few expository accounts beyond the GL(2) case. This book features expository accounts of several topics on automorphic forms on higher rank groups, including rationality questions on unitary group, theta lifts and their applications to Arthur's conjectures, quaternionic modular forms, and automorphic forms over functions fields and their applications to inverse Galois problems. It is based on the lecture notes prepared for the twenty-fifth Arizona Winter School on “Automorphic Forms beyond GL(2)”, held March 5–9, 2022, at the University of Arizona in Tucson. The speakers were Ellen Eischen, Wee Teck Gan, Aaron Pollack, and Zhiwei Yun. The exposition of the book is in a style accessible to students entering the field. Advanced graduate students as well as researchers will find this a valuable introduction to various important and very active research areas.
This book is an introduction to residuated structures, viewed as a common thread binding together algebra and logic. The framework includes well-studied structures from classical abstract algebra such as lattice-ordered groups and ideals of rings, as well as structures serving as algebraic semantics for substructural and other non-classical logics. Crucially, classes of these structures are studied both algebraically, yielding a rich structure theory along the lines of Conrad's program for lattice-ordered groups, and algorithmically, via analytic sequent or hypersequent calculi. These perspectives are related using a natural notion of equivalence for consequence relations that provides a bridge offering benefits to both sides. Algorithmic methods are used to establish properties like decidability, amalgamation, and generation by subclasses, while new insights into logical systems are obtained by studying associated classes of structures. The book is designed to serve the purposes of novices and experts alike. The first three chapters provide a gentle introduction to the subject, while subsequent chapters provide a state-of-the-art account of recent developments in the field.
Introduces and clarifies the basic theories of 12 structural concepts, offering a fundamental theory of groups, rings and other algebraic structures. Identifies essentials and describes interrelationships between particular theories. Selected classical theorems and results relevant to current research are proved rigorously within the theory of each structure. Throughout the text the reader is frequently prompted to perform integrated exercises of verification and to explore examples.
This book is a unique and accessible reference guide to the work of eighty key figures who have played an important role in the development of ideas about language from antiquity to the twenty-first century. The entries are extensively cross referenced, allowing readers to trace influences, developments, and debates both in contemporary thinking and across time. Each entry concludes with suggestions for further reading of primary texts and secondary sources, encouraging readers to find out more about the particular key thinker and the impact of his or her ideas.