You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Due to the rapid progress in laser technology a wealth of novel fundamental and applied applications of lasers in atomic and plasma physics have become possible. This book focuses on the interaction of high intensity lasers with matter. It reviews the state of the art of high power laser sources, intensity laser-atom and laser-plasma interactions, laser matter interaction at relativistic intensities, and QED with intense lasers.
The field of High-Resolution Spectroscopy has been considerably extended and even redefined in some areas. Combining the knowledge of spectroscopy, laser technology, chemical computation, and experiments, Handbook of High-Resolution Spectroscopy provides a comprehensive survey of the whole field as it presents itself today, with emphasis on the recent developments. This essential handbook for advanced research students, graduate students, and researchers takes a systematic approach through the range of wavelengths and includes the latest advances in experiment and theory that will help and guide future applications. The first comprehensive survey in high-resolution molecular spectroscopy for...
The papers in this volume cover the major areas of research activity in the field of ultrafast optics at the present time, and they have been selected to provide an overview of the current state of the art. The purview of the field is the methods for the generation, amplification, and characterization of electromagnetic pulses with durations from the pieo-to the attosecond range, as well as the technical issues surrounding the application of these pulses in physics, chemistry, and biology. The contributions were solicited from the participants in the Ultrafast Optics IV Conference, held in Vienna, Austria, in June 2003. The purpose of the conference is similar to that of this book: to provid...
Profiles of some of the most inventive and creative Canadians and the ideas that are making Canada a leading nation in innovation. From saving lives to saving harvests... From discovering ancient diamonds to identifying the first exo-planet... From driverless cars to quantum computers... From Nobel laureates to your next-door neighbor... This book offers uplifting stories of innovative Canadians. Canadians Who Innovate includes two Nobel laureates, an astronaut, extraordinary business leaders, the godfathers of artificial intelligence, and top quantum experts, including the inventor of what may be the next quantum computer. It features profiles of the first director of engineering at Google,...
Recent advances in ultrashort pulsed laser technology have opened new frontiers in atomic, molecular and optical sciences. The 12th International Conference on Multiphoton Processes (ICOMP12) and the 3rd International Conference on Attosecond Physics (ATTO3), held jointly in Sapporo, Japan, during July 3-8, showcased studies at the forefront of research on multiphoton processes and attosecond physics. This book summarizes presentations and discussions from these two conferences.
This open access volume brings together selected papers from the 8th International Conference on Attosecond Science and Technology. The contributions within represent the latest advances in attosecond science, covering recent progress in ultrafast electron dynamics in atoms, molecules, clusters, surfaces, solids, nanostructures and plasmas, as well as the generation of sub-femtosecond XUV and X-ray pulses, either through table-top laser setups or with X-ray free-electron lasers. In addition to highlighting key advances and outlining the state of the field, the conference and its proceedings serve to introduce junior researchers to the community, promote collaborations, and represent the global and topical diversity of the field.
This volume covers a broad range of topics focusing on atoms, molecules, and clusters interacting in intense laser field, laser induced filamentation, and laser plasma interaction and application. The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries.
This is a collection of common sense realizations attempting to point out the many facets in humanity that are actually part of Gods one creation. The collection points out that to fully enjoy what God has made, we have to respect the boundaries He has given us in love for our benefit, and that the nature some people acknowledge is evidence of His loving care. We are all tiny parts of one magnificent creation, and as such, God hopes we will revel in the freedom He provides when we choose to follow Him and give Him all the devotion we can possibly muster. Music, art, science, sociologyall the terminology we can name has one source: God.
“Thoughtful, informative, and darkly entertaining. It’s the best treatment of this important (and scary) topic you can find.” —Elizabeth Kolbert Right now, a group of scientists is working on ways to minimize the catastrophic impact of global warming. But they’re not designing hybrids or fuel cells or wind turbines. They’re trying to lower the temperature of the entire planet. And they’re doing it with huge contraptions that suck CO2 from the air, machines that brighten clouds and deflect sunlight away from the earth, even artificial volcanoes that spray heat-reflecting particles into the atmosphere. This is the radical and controversial world of geoengineering, which only five...
This book brings together more closely researchers working in the two fields of quantum optics and nano-optics and provides a general overview of the main topics of interest in applied and fundamental research. The contributions cover, for example, single-photon emitters and emitters of entangled photon pairs based on epitaxially grown semiconductor quantum dots, nitrogen vacancy centers in diamond as single-photon emitters, coupled quantum bits based on trapped ions, integrated waveguide superconducting nanowire single-photon detectors, quantum nano-plasmonics, nanosensing, quantum aspects of biophotonics and quantum metamaterials. The articles span the bridge from pedagogical introductions on the fundamental principles to the current state-of-the-art, and are authored by pioneers and leaders in the field. Numerical simulations are presented as a powerful tool to gain insight into the physical behavior of nanophotonic systems and provide a critical complement to experimental investigations and design of devices.