Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Minimax Methods in Critical Point Theory with Applications to Differential Equations
  • Language: en
  • Pages: 110

Minimax Methods in Critical Point Theory with Applications to Differential Equations

The book provides an introduction to minimax methods in critical point theory and shows their use in existence questions for nonlinear differential equations. An expanded version of the author's 1984 CBMS lectures, this volume is the first monograph devoted solely to these topics. Among the abstract questions considered are the following: the mountain pass and saddle point theorems, multiple critical points for functionals invariant under a group of symmetries, perturbations from symmetry, and variational methods in bifurcation theory. The book requires some background in functional analysis and differential equations, especially elliptic partial differential equations. It is addressed to mathematicians interested in differential equations and/or nonlinear functional analysis, particularly critical point theory.

Research in Progress
  • Language: en
  • Pages: 302

Research in Progress

  • Type: Book
  • -
  • Published: 1992
  • -
  • Publisher: Unknown

None

Evolution Equations
  • Language: en
  • Pages: 439

Evolution Equations

  • Type: Book
  • -
  • Published: 2019-04-24
  • -
  • Publisher: CRC Press

Celebrating the work of renowned mathematician Jerome A. Goldstein, this reference compiles original research on the theory and application of evolution equations to stochastics, physics, engineering, biology, and finance. The text explores a wide range of topics in linear and nonlinear semigroup theory, operator theory, functional analysis, and li

Nonlinear Equations: Methods, Models and Applications
  • Language: en
  • Pages: 268

Nonlinear Equations: Methods, Models and Applications

  • Type: Book
  • -
  • Published: 2012-12-06
  • -
  • Publisher: Birkhäuser

A collection of research articles originating from the Workshop on Nonlinear Analysis and Applications held in Bergamo in July 2001. Classical topics of nonlinear analysis were considered, such as calculus of variations, variational inequalities, critical point theory and their use in various aspects of the study of elliptic differential equations and systems, equations of Hamilton-Jacobi, Schrödinger and Navier-Stokes, and free boundary problems. Moreover, various models were focused upon: travelling waves in supported beams and plates, vortex condensation in electroweak theory, information theory, non-geometrical optics, and Dirac-Fock models for heavy atoms.

Topics in Nonlinear Analysis
  • Language: en
  • Pages: 741

Topics in Nonlinear Analysis

  • Type: Book
  • -
  • Published: 2012-12-06
  • -
  • Publisher: Birkhäuser

Herbert Amann's work is distinguished and marked by great lucidity and deep mathematical understanding. The present collection of 31 research papers, written by highly distinguished and accomplished mathematicians, reflect his interest and lasting influence in various fields of analysis such as degree and fixed point theory, nonlinear elliptic boundary value problems, abstract evolutions equations, quasi-linear parabolic systems, fluid dynamics, Fourier analysis, and the theory of function spaces. Contributors are A. Ambrosetti, S. Angenent, W. Arendt, M. Badiale, T. Bartsch, Ph. Bénilan, Ph. Clément, E. Faöangová, M. Fila, D. de Figueiredo, G. Gripenberg, G. Da Prato, E.N. Dancer, D. Daners, E. DiBenedetto, D.J. Diller, J. Escher, G.P. Galdi, Y. Giga, T. Hagen, D.D. Hai, M. Hieber, H. Hofer, C. Imbusch, K. Ito, P. Krejcí, S.-O. Londen, A. Lunardi, T. Miyakawa, P. Quittner, J. Prüss, V.V. Pukhnachov, P.J. Rabier, P.H. Rabinowitz, M. Renardy, B. Scarpellini, B.J. Schmitt, K. Schmitt, G. Simonett, H. Sohr, V.A. Solonnikov, J. Sprekels, M. Struwe, H. Triebel, W. von Wahl, M. Wiegner, K. Wysocki, E. Zehnder and S. Zheng.

Progress In Nonlinear Analysis - Proceedings Of The Second International Conference On Nonlinear Analysis
  • Language: en
  • Pages: 468

Progress In Nonlinear Analysis - Proceedings Of The Second International Conference On Nonlinear Analysis

The real world is complicated, as a result of which most mathematical models arising from mechanics, physics, chemistry and biology are nonlinear. Based on the efforts of scientists in the 20th century, especially in the last three decades, topological, variational, geometrical and other methods have developed rapidly in nonlinear analysis, which made direct studies of nonlinear models possible in many cases, and provided global information on nonlinear problems which was not available by the traditional linearization method. This volume reflects that rapid development in many areas of nonlinear analysis.

A history of the second fifty years, American Mathematical Society 1939-88
  • Language: en
  • Pages: 368

A history of the second fifty years, American Mathematical Society 1939-88

This book chronicles the Society's activities over fifty years, as membership grew, as publications became more numerous and diverse, as the number of meetings and conferences increased, and as services to the mathematical community expanded. To download free chapters of this book, click here.

Rational Points on Modular Elliptic Curves
  • Language: en
  • Pages: 146

Rational Points on Modular Elliptic Curves

The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrization...

Progress in Variational Methods
  • Language: en
  • Pages: 249

Progress in Variational Methods

In the last forty years, nonlinear analysis has been broadly and rapidly developed. Lectures presented in the International Conference on Variational Methods at the Chern Institute of Mathematics in Tianjin of May 2009 reflect this development from different angles. This volume contains articles based on lectures in the following areas of nonlinear analysis: critical point theory, Hamiltonian dynamics, partial differential equations and systems, KAM theory, bifurcation theory, symplectic geometry, geometrical analysis, and celestial mechanics. Combinations of topological, analytical (especially variational), geometrical, and algebraic methods in these researches play important roles. In this proceedings, introductory materials on new theories and surveys on traditional topics are also given. Further perspectives and open problems on hopeful research topics in related areas are described and proposed. Researchers, graduate and postgraduate students from a wide range of areas in mathematics and physics will find contents in this proceedings are helpful.

Calderon-Zygmund Capacities and Operators on Nonhomogeneous Spaces
  • Language: en
  • Pages: 176

Calderon-Zygmund Capacities and Operators on Nonhomogeneous Spaces

Singular integral operators play a central role in modern harmonic analysis. Simplest examples of singular kernels are given by Calderon-Zygmund kernels. Many important properties of singular integrals have been thoroughly studied for Calderon-Zygmund operators. In the 1980's and early 1990's, Coifman, Weiss, and Christ noticed that the theory of Calderon-Zygmund operators can be generalized from Euclidean spaces to spaces of homogeneous type. The purpose of this book is to make the reader believe that homogeneity (previously considered as a cornerstone of the theory) is not needed. This claim is illustrated by presenting two harmonic analysis problems famous for their difficulty. The first ...