You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Functional differential equations have received attention since the 1920's. Within that development, boundary value problems have played a prominent role in both the theory and applications dating back to the 1960's. This book attempts to present some of the more recent developments from a cross-section of views on boundary value problems for functional differential equations.Contributions represent not only a flavor of classical results involving, for example, linear methods and oscillation-nonoscillation techiques, but also modern nonlinear methods for problems involving stability and control as well as cone theoretic, degree theoretic, and topological transversality strategies. A balance ...
The authors give a treatment of the theory of ordinary differential equations (ODEs) that is excellent for a first course at the graduate level as well as for individual study. The reader will find it to be a captivating introduction with a number of non-routine exercises dispersed throughout the book.The authors begin with a study of initial value problems for systems of differential equations including the Picard and Peano existence theorems. The continuability of solutions, their continuous dependence on initial conditions, and their continuous dependence with respect to parameters are presented in detail. This is followed by a discussion of the differentiability of solutions with respect...
This book provides an extensive survey on Lyapunov-type inequalities. It summarizes and puts order into a vast literature available on the subject, and sketches recent developments in this topic. In an elegant and didactic way, this work presents the concepts underlying Lyapunov-type inequalities, covering how they developed and what kind of problems they address. This survey starts by introducing basic applications of Lyapunov’s inequalities. It then advances towards even-order, odd-order, and higher-order boundary value problems; Lyapunov and Hartman-type inequalities; systems of linear, nonlinear, and quasi-linear differential equations; recent developments in Lyapunov-type inequalities...
Variational methods are very powerful techniques in nonlinear analysis and are extensively used in many disciplines of pure and applied mathematics (including ordinary and partial differential equations, mathematical physics, gauge theory, and geometrical analysis).In our first chapter, we gather the basic notions and fundamental theorems that will be applied throughout the chapters. While many of these items are easily available in the literature, we gather them here both for the convenience of the reader and for the purpose of making this volume somewhat self-contained. Subsequent chapters deal with how variational methods can be used in fourth-order problems, Kirchhoff problems, nonlinear field problems, gradient systems, and variable exponent problems. A very extensive bibliography is also included.
The authors give a systematic introduction to boundary value problems (BVPs) for ordinary differential equations. The book is a graduate level text and good to use for individual study. With the relaxed style of writing, the reader will find it to be an enticing invitation to join this important area of mathematical research. Starting with the basics of boundary value problems for ordinary differential equations, linear equations and the construction of Green's functions are presented clearly.A discussion of the important question of the existence of solutions to both linear and nonlinear problems plays a central role in this volume and this includes solution matching and the comparison of eigenvalues.The important and very active research area on existence and multiplicity of positive solutions is treated in detail. The last chapter is devoted to nodal solutions for BVPs with separated boundary conditions as well as for non-local problems.While this Volume II complements , it can be used as a stand-alone work.
The book reviews the application of discrete fractional operators in diverse fields such as biological and chemical reactions, as well as chaotic systems, demonstrating their applications in physics. The dynamical analysis is carried out using equilibrium points of the system for studying their stability properties and the chaotic behaviors are illustrated with the help of bifurcation diagrams and Lyapunov exponents. The book is divided into three parts. Part I deals with the application of discrete fractional operators in chemical reaction-based systems with biological significance. Two different chemical reaction models are analysed- one being disproportionation of glucose, which plays an ...
World Scientific Series in Applicable Analysis (WSSIAA) reports new developments of a high mathematical standard and of current interest. Each volume in the series is devoted to mathematical analysis that has been applied, or is potentially applicable to the solution of scientific, engineering, and social problems. The third volume of WSSIAA contains 47 research articles on inequalities by leading mathematicians from all over the world and a tribute by R.M. Redheffer to Wolfgang Walter ? to whom this volume is dedicated ? on his 66th birthday.Contributors: A Acker, J D Aczl, A Alvino, K A Ames, Y Avishai, C Bandle, B M Brown, R C Brown, D Brydak, P S Bullen, K Deimling, J Diaz, ? Elbert, P...
This book summarizes the qualitative theory of differential equations with or without delays, collecting recent oscillation studies important to applications and further developments in mathematics, physics, engineering, and biology. The authors address oscillatory and nonoscillatory properties of first-order delay and neutral delay differential eq