You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book, like the first and second editions, addresses the fundamental principles of interaction between radiation and matter and the principles of particle detection and detectors in a wide scope of fields, from low to high energy, including space physics and medical environment. It provides abundant information about the processes of electromagnetic and hadronic energy deposition in matter, detecting systems, performance of detectors and their optimization.The third edition includes additional material covering, for instance: mechanisms of energy loss like the inverse Compton scattering, corrections due to the Landau-Pomeranchuk-Migdal effect, an extended relativistic treatment of nucleu...
The fourth edition of this book has been widely revised. It includes additional chapters and some sections are complemented with either new ones or an extension of their content.In this latest edition a complete treatment of the physics and properties of semiconductors is presented, covering transport phenomena in semiconductors, scattering mechanisms, radiation effects and displacement damages. Furthermore, this edition presents a comprehensive treatment of the Coulomb scattering on screened nuclear potentials resulting from electrons, protons, light- and heavy-ions — ranging from (very) low up to ultra-relativistic kinetic energies — and allowing one to derive the corresponding NIEL (n...
This book, like the first and second editions, addresses the fundamental principles of interaction between radiation and matter and the principles of particle detection and detectors in a wide scope of fields, from low to high energy, including space physics and medical environment. It provides abundant information about the processes of electromagnetic and hadronic energy deposition in matter, detecting systems, performance of detectors and their optimization. The third edition includes additional material covering, for instance: mechanisms of energy loss like the inverse Compton scattering, corrections due to the LandauOCoPomeranchukOCoMigdal effect, an extended relativistic treatment of n...
This book, like its first edition, addresses the fundamental principles of interaction between radiation and matter and the principle of particle detectors in a wide scope of fields, from low to high energy, including space physics and the medical environment. It provides abundant information about the processes of electromagnetic and hadronic energy deposition in matter, detecting systems, and performance and optimization of detectors.In this second edition, new sections dedicated to the following topics are included: space and high-energy physics radiation environment, non-ionizing energy loss (NIEL), displacement damage in silicon devices and detectors, single event effects, detection of ...
This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers state-of-the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application. The content and coverage of the book benefit from the extensive experience of the two authors who have made significant contributions as researchers as well as in teaching physics students in various universities.
This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope in the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments, including in outer space and in the medical environment. This book also covers state-of-the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.The content and coverage of the book benefit from the extensive experience of the two authors who have made significant contributions as researchers as well as in teaching physics students in various universities.
This book features up-to-date technology applications to radiation detection. It synthesises several techniques of and approaches to radiation detection, covering a wide range of applications and addressing a large audience of experts and students. Many of the talks are in fact reviews of particular topics often not covered in standard books and other conferences, for instance, the medical physics section. To present these medical physics talks is crucial, since a large fraction of the community in medical physics are from the particle physics community. The same feature is true for astroparticle and space physics, which are relatively new fields. This book is unique in its scope. Except for IEEE, there is no other conference in the world that presents such a wide coverage of advanced technology applied to particle physics. However, unlike IEEE, more room is made in the book for reviews and general talks.
Astroparticle and space physics -- Calorimetry -- High energy physics -- Medical applications -- New detectors and particle identification -- Open session on experimental results -- Radiation damage -- Tracker
The exploration of the subnuclear world is done through increasingly complex experiments covering a wide range of energy and performed in a large variety of environments ranging from particle accelerators, underground detectors to satellites and the space laboratory. The achievement of these research programs calls for novel techniques, new materials and instrumentation to be used in detectors, often of large scale. Therefore, fundamental physics is at the forefront of technological advance and also leads to many applications. Among these, are the progresses from space experiments whose results allow the understanding of the cosmic environment, of the origin and evolution of the universe after the Big Bang.
The conference was aimed at promoting contacts between scientists involved in solar-terrestrial physics, space physics, astroparticle physics and cosmology both from the theoretical and the experimental approach. The conference was devoted to physics and physics requirements, survey of theoretical models and performances of detectors employed (or to be employed) in experiments for fundamental physics, astroparticle physics, astrophysics research and space environment — including Earth magnetosphere and heliosphere and solar-terrestrial physics. Furthermore, cosmic rays have been used to extend the scientific research experience to teachers and students with air shower arrays and other tech...