Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem
  • Language: en
  • Pages: 235

An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem

This book gives an up-to-date account of progress on Pansu's celebrated problem on the sub-Riemannian isoperimetric profile of the Heisenberg group. It also serves as an introduction to the general field of sub-Riemannian geometric analysis. It develops the methods and tools of sub-Riemannian differential geometry, nonsmooth analysis, and geometric measure theory suitable for attacks on Pansu's problem.

Dynamics of Discrete Group Action
  • Language: en
  • Pages: 714

Dynamics of Discrete Group Action

Provides the first systematic study of geometry and topology of locally symmetric rank one manifolds and dynamics of discrete action of their fundamental groups. In addition to geometry and topology, this study involves several other areas of Mathematics – from algebra of varieties of groups representations and geometric group theory, to geometric analysis including classical questions from function theory.

Conformal Geometry of Discrete Groups and Manifolds
  • Language: en
  • Pages: 541

Conformal Geometry of Discrete Groups and Manifolds

The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, Univ...

Riemannian Geometry
  • Language: en
  • Pages: 132

Riemannian Geometry

This book is a compendium of survey lectures presented at a conference on Riemannian Geometry sponsored by The Fields Institute for Research in Mathematical Sciences (Waterloo, Canada) in August 1993. Attended by over 80 participants, the aim of the conference was to promote research activity in Riemannian geometry. A select group of internationally established researchers in the field were invited to discuss and present current developments in a selection of contemporary topics in Riemannian geometry. This volume contains four of the five survey lectures presented at the conference.

Conformal Dimension
  • Language: en
  • Pages: 162

Conformal Dimension

Conformal dimension measures the extent to which the Hausdorff dimension of a metric space can be lowered by quasisymmetric deformations. Introduced by Pansu in 1989, this concept has proved extremely fruitful in a diverse range of areas, including geometric function theory, conformal dynamics, and geometric group theory. This survey leads the reader from the definitions and basic theory through to active research applications in geometric function theory, Gromov hyperbolic geometry, and the dynamics of rational maps, amongst other areas. It reviews the theory of dimension in metric spaces and of deformations of metric spaces. It summarizes the basic tools for estimating conformal dimension and illustrates their application to concrete problems of independent interest. Numerous examples and proofs are provided. Working from basic definitions through to current research areas, this book can be used as a guide for graduate students interested in this field, or as a helpful survey for experts. Background needed for a potential reader of the book consists of a working knowledge of real and complex analysis on the level of first- and second-year graduate courses.

Rigidity in Dynamics and Geometry
  • Language: en
  • Pages: 494

Rigidity in Dynamics and Geometry

This volume of proceedings is an offspring of the special semester Ergodic Theory, Geometric Rigidity and Number Theory which was held at the Isaac Newton Institute for Mathematical Sciences in Cambridge, UK, from Jan uary until July, 2000. Beside the activities during the semester, there were workshops held in January, March and July, the first being of introductory nature with five short courses delivered over a week. Although the quality of the workshops was excellent throughout the semester, the idea of these proceedings came about during the March workshop, which is hence more prominently represented, The format of the volume has undergone many changes, but what has remained untouched i...

Exercises in Modules and Rings
  • Language: en
  • Pages: 427

Exercises in Modules and Rings

This volume offers a compendium of exercises of varying degree of difficulty in the theory of modules and rings. It is the companion volume to GTM 189. All exercises are solved in full detail. Each section begins with an introduction giving the general background and the theoretical basis for the problems that follow.

Bordism, Stable Homotopy and Adams Spectral Sequences
  • Language: en
  • Pages: 294

Bordism, Stable Homotopy and Adams Spectral Sequences

This book is a compilation of lecture notes that were prepared for the graduate course ``Adams Spectral Sequences and Stable Homotopy Theory'' given at The Fields Institute during the fall of 1995. The aim of this volume is to prepare students with a knowledge of elementary algebraic topology to study recent developments in stable homotopy theory, such as the nilpotence and periodicity theorems. Suitable as a text for an intermediate course in algebraic topology, this book provides a direct exposition of the basic concepts of bordism, characteristic classes, Adams spectral sequences, Brown-Peterson spectra and the computation of stable stems. The key ideas are presented in complete detail without becoming encyclopedic. The approach to characteristic classes and some of the methods for computing stable stems have not been published previously. All results are proved in complete detail. Only elementary facts from algebraic topology and homological algebra are assumed. Each chapter concludes with a guide for further study.

Quasicrystals and Discrete Geometry
  • Language: en
  • Pages: 306

Quasicrystals and Discrete Geometry

Comprising the proceedings of the fall 1995 semester program arranged by The Fields Institute at the U. of Toronto, Ontario, Canada, this volume contains eleven contributions which address ordered aperiodic systems realized either as point sets with the Delone property or as tilings of a Euclidean space. This collection of articles aims to bring into the mainstream of mathematics and mathematical physics this developing field of study integrating algebra, geometry, Fourier analysis, number theory, crystallography, and theoretical physics. Annotation copyrighted by Book News, Inc., Portland, OR

Elements of Neurogeometry
  • Language: en
  • Pages: 388

Elements of Neurogeometry

  • Type: Book
  • -
  • Published: 2017-11-08
  • -
  • Publisher: Springer

This book describes several mathematical models of the primary visual cortex, referring them to a vast ensemble of experimental data and putting forward an original geometrical model for its functional architecture, that is, the highly specific organization of its neural connections. The book spells out the geometrical algorithms implemented by this functional architecture, or put another way, the “neurogeometry” immanent in visual perception. Focusing on the neural origins of our spatial representations, it demonstrates three things: firstly, the way the visual neurons filter the optical signal is closely related to a wavelet analysis; secondly, the contact structure of the 1-jets of th...