You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The first notable feature of this book is its innovation: Computational intelligence (CI), a fast evolving area, is currently attracting lots of researchers’ attention in dealing with many complex problems. At present, there are quite a lot competing books existing in the market. Nevertheless, the present book is markedly different from the existing books in that it presents new paradigms of CI that have rarely mentioned before, as opposed to the traditional CI techniques or methodologies employed in other books. During the past decade, a number of new CI algorithms are proposed. Unfortunately, they spread in a number of unrelated publishing directions which may hamper the use of such publ...
Under certain conditions electrons in a semiconductor become much hotter than the surrounding crystal lattice. When this happens, Ohm's Law breaks down: current no longer increases linearly with voltage and may even decrease. Hot electrons have long been a challenging problem in condensed matter physics and remain important in semiconductor research. Recent advances in technology have led to semiconductors with submicron dimensions, where electrons can be confined to two (quantum well), one (quantum wire), or zero (quantum dot) dimensions. In these devices small voltages heat electrons rapidly, inducing complex nonlinear behavior; the study of hot electrons is central to their further develo...
'... These volumes provide the very latest in this critical technology and are an invaluable resource for scientists in both academia and industry concerned with the semiconductor future and all of science.'Foreword by Leonard C Feldman (Director Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, USA)HighlightsAs we delve more deeply into the physics and chemistry of functional materials and processes, we are inexorably driven to the nanoscale. And nowhere is the development of instrumentation and associated techniques more important to scientific progress than in the area of nanoscience. The dramatic expansion of efforts to peer into nanoscale materials and processes has made it critical to capture and summarize the cutting-edge instrumentation and techniques that have become indispensable for scientific investigation in this arena. This Handbook is a key resource developed for scientists, engineers and advanced graduate students in which eminent scientists present the forefront of instrumentation and techniques for the study of structural, optical and electronic properties of semiconductor nanostructures.
A Global Warming Forum: Scientific, Economic, and Legal Overview provides an integrated, thematic approach to major critical aspects of the problem presented by global warming. Scientific issues; economics; natural resource management concerns; and legal, educational, and policy considerations are discussed within the context of arriving at solutions to global warming problems. Data and information is derived from diverse geographic locations, especially in the case history chapters requiring the use of integrated interdisciplinary methods. Graphs and tables are used extensively throughout the text to illustrate key concepts. A Global Warming Forum: Scientific, Economic, and Legal Overview is an excellent survey for researchers in all areas of geoscience and climate assessment, including geochemistry, oceanography, climatology, and resource management.
This book examines the physical principles behind the operation of high-speed transistors operating at frequencies above 10 GHz and having switching times less than 100 psec. If the 1970s cannot be remembered for the opportunities for creating and extensively using transistors operating at such high speeds, then, the situation has changed radically because of rapid progress in sub micrometer technology for manufacturing transistors and integrated circuits from GaAs and other semiconductor materials and the powerful influx of new physical concepts. Not only have transistors having switching speeds of 50-100 psec operating in the 10-20 GHz region been created in recent years, but the possibili...
This book discusses new trends in nanotechnology. It covers a wide range of topics starting from applications of nanomaterials in perovskite solar cells, pharmacy, and dentistry to self-assembled growth of GaN nanostructures on flexible metal foils by laser molecular beam epitaxy. It also includes other interesting topics such as advancement in carbon nanotubes; processing techniques, purification and industrial applications, metal di-chalcogenides for waste water treatment and recent advancement in nanostructured-based electrochemical genosensors for pathogen detection and many more. The book will be of great interest to researchers, professionals and students working in the areas of nanomaterials and nanotechnology.
This book presents the dispersion relation in heavily doped nano-structures. The materials considered are III-V, II-VI, IV-VI, GaP, Ge, Platinum Antimonide, stressed, GaSb, Te, II-V, HgTe/CdTe superlattices and Bismuth Telluride semiconductors. The dispersion relation is discussed under magnetic quantization and on the basis of carrier energy spectra. The influences of magnetic field, magneto inversion, and magneto nipi structures on nano-structures is analyzed. The band structure of optoelectronic materials changes with photo-excitation in a fundamental way according to newly formulated electron dispersion laws. They control the quantum effect in optoelectronic devices in the presence of li...