You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Powerful, independent recipes to build deep learning models in different application areas using R libraries About This Book Master intricacies of R deep learning packages such as mxnet & tensorflow Learn application on deep learning in different domains using practical examples from text, image and speech Guide to set-up deep learning models using CPU and GPU Who This Book Is For Data science professionals or analysts who have performed machine learning tasks and now want to explore deep learning and want a quick reference that could address the pain points while implementing deep learning. Those who wish to have an edge over other deep learning professionals will find this book quite usefu...
Step by Step guide filled with real world practical examples. About This Book Get your first experience with data analysis with one of the most powerful types of analysis—time-series. Find patterns in your data and predict the future pattern based on historical data. Learn the statistics, theory, and implementation of Time-series methods using this example-rich guide Who This Book Is For This book is for anyone who wants to analyze data over time and/or frequency. A statistical background is necessary to quickly learn the analysis methods. What You Will Learn Understand the basic concepts of Time Series Analysis and appreciate its importance for the success of a data science project Develo...
Increase speed and performance of your applications with efficient data structures and algorithms About This Book See how to use data structures such as arrays, stacks, trees, lists, and graphs through real-world examples Find out about important and advanced data structures such as searching and sorting algorithms Understand important concepts such as big-o notation, dynamic programming, and functional data structured Who This Book Is For This book is for R developers who want to use data structures efficiently. Basic knowledge of R is expected. What You Will Learn Understand the rationality behind data structures and algorithms Understand computation evaluation of a program featuring asymp...
Step by Step guide filled with real world practical examples.About This Book* Get your first experience with data analysis with one of the most powerful types of analysis-time-series.* Find patterns in your data and predict the future pattern based on historical data.* Learn the statistics, theory, and implementation of Time-series methods using this example-rich guideWho This Book Is ForThis book is for anyone who wants to analyze data over time and/or frequency. A statistical background is necessary to quickly learn the analysis methods.What You Will Learn* Understand the basic concepts of Time Series Analysis and appreciate its importance for the success of a data science project* Develop...
The completely revised and updated, definitive resource for students and professionals in organic chemistry The revised and updated 8th edition of March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure explains the theories of organic chemistry with examples and reactions. This book is the most comprehensive resource about organic chemistry available. Readers are guided on the planning and execution of multi-step synthetic reactions, with detailed descriptions of all the reactions The opening chapters of March's Advanced Organic Chemistry, 8th Edition deal with the structure of organic compounds and discuss important organic chemistry bonds, fundamental principles of confor...
Compendium of Organic Synthetic Methods, Volume 11 continues the motivation of the series, which is to facilitate the search for quality, selected functional group transformations, organized by reacting functional group of starting material and functional group formed, with full references to each reaction.
This cutting-edge book covers emerging, evolutionary and nature inspired optimization techniques in the field of advanced manufacturing. The complexity of real life advanced manufacturing problems often cannot be solved by traditional engineering or computational methods. Hence, in recent years researchers and practitioners have proposed and developed new strands of advanced, intelligent techniques and methodologies. Evolutionary computing approaches are introduced in the context of a wide range of manufacturing activities, and through the examination of practical problems and their solutions, readers will gain confidence to apply these powerful computing solutions. The initial chapters introduce and discuss the well established evolutionary algorithm, to help readers to understand the basic building blocks and steps required to successfully implement their own solutions to real life advanced manufacturing problems. In the later chapters, modified and improved versions of evolutionary algorithms are discussed. The book concludes with appendices which provide general descriptions of several evolutionary algorithms.
Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance
Cyber-physical systems (CPS) have emerged as a unifying name for systems where cyber parts (i.e., the computing and communication parts) and physical parts are tightly integrated, both in design and during operation. Such systems use computations and communication deeply embedded in and interacting with human physical processes as well as augmenting existing and adding new capabilities. As such, CPS is an integration of computation, networking, and physical processes. Embedded computers and networks monitor and control the physical processes, with feedback loops where physical processes affect computations and vice versa. The economic and societal potential of such systems is vastly greater ...
This two-volume set (CCIS 951 and CCIS 952) constitutes the proceedings of the 13th International Conference on Bio-inspired Computing: Theories and Applications, BIC-TA 2018, held in Beijing, China, in November 2018. The 88 full papers presented in both volumes were selected from 206 submissions. The papers deal with studies abstracting computing ideas such as data structures, operations with data, ways to control operations, computing models from living phenomena or biological systems such as evolution, cells, neural networks, immune systems, swarm intelligence.