You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Organized nanoassemblies of inorganic nanoparticles and organic molecules are building blocks of nanodevices, whether they are designed to perform molecular level computing, sense the environment or improve the catalytic properties of a material. The key to creation of these hybrid nanostructures lies in understanding the chemistry at a fundamental level. This book serves as a reference book for researchers by providing fundamental understanding of many nanoscopic materials.
The contributors to the book are world best experts in the optics of random media; they provide a state-of-the-art review of recent developments in the field including nonlinear optical and magneto-optical properties, Raman and hyper-Raman scattering, laser action, plasmon excitation and localized giant fields, imaging and spectroscopy of random media
This invaluable book presents most of the important papers of Emil Wolf, published over half-a-century. It covers chiefly diffraction theory (especially the analysis of the focal region), the theory of direct and inverse scattering, phase-space methods in quantum mechanics, the foundation of radiometry, phase conjugation and coherence theory. Several papers which have become classics of the optical literature are included, such as those on Wolf's rigorous formulation of the theory of partial coherence and partial polarization, the introduction of diffraction tomography, and his discovery of correlation-induced shifts of spectral lines (often called the Wolf effect). There are also papers dealing with the historical development of optics and some review articles.
Photonic band gap crystals offer unique ways to tailor light and the propagation of electromagnetic waves. In analogy to electrons in a crystal, EM waves propagating in a structure with a periodically-modulated dielectric constant are organized into photonic bands separated by gaps in which propagating states are forbidden. Proposed applications of such photonic band gap crystals, operating at frequencies from microwave to optical, include zero- threshold lasers, low-loss resonators and cavities, and efficient microwave antennas. Spontaneous emission is suppressed for photons in the photonic band gap, offering novel approaches to manipulating the EM field and creating high-efficiency light-e...
In the last few years it was seen the emergence of various new quantum phenomena specifically related with electronic or optical confinement on a sub-wavelength-size. Fast developments simultaneously occurred in the field of Atomic Physics, notably through various regimes of Cavity Quantum Electrodynamics, and in Solid State Physics, with advances in Quantum Well technology and Nanooptoelectronics. Simultaneously, breakthroughs in Near-Field Optics provided new tools which should be widely applicable to these domains. However, the key concepts used to describe these new and partly related effects are often very different and specific of the Community involved in a given development. It has b...
Photonic crystals are a very hot topic in photonics. The basics, fabrication, application and new theoretical developments in the field of photonic crystals are presented in a comprehensive way, together with a survey of the advanced state-of-the-art report.
This volume contains papers presented at the NATO Advanced Study Institute (ASI) Photonic Crystals and Light Localization held at the Creta Maris Hotel in Limin Hersonissou, Crete, June 18-30, 2000. Photonic crystals offer unique ways to tailor light and the propagation of electromagnetic waves (EM). In analogy to electrons in a crystal, EM waves propagating in a structure with a periodically modulated dielectric constant are organized into photonic bands, separated by gaps where propagating states are forbidden. There have been proposals for novel applications ofthese photonic band gap (PBG) crystals, with operating frequencies ranging from microwave to the optical regime, that include zero threshold lasers, low-loss resonators and cavities, and efficient microwave antennas. Spontaneous emission, suppressed for photons in the photonic band gap, offers novel approaches to manipulate the EM field and create high-efficiency light-emitting structures. Innovative ways to manipulate light can have a profound iofluence on science and technology.
This volume represents the proceedings of the Ninth Annual MaxEnt Workshop, held at Dartmouth College in Hanover, New Hampshire, on August 14-18, 1989. These annual meetings are devoted to the theory and practice of Bayesian Probability and the Maximum Entropy Formalism. The fields of application exemplified at MaxEnt '89 are as diverse as the foundations of probability theory and atmospheric carbon variations, the 1987 Supernova and fundamental quantum mechanics. Subjects include sea floor drug absorption in man, pressures, neutron scattering, plasma equilibrium, nuclear magnetic resonance, radar and astrophysical image reconstruction, mass spectrometry, generalized parameter estimation, de...
I express my sincere gratitude to NATO Science Committee for granting me the financial award to organize and direct the Advanced Research Workshop on "MULTILAYERED and FIBRE-REINFORCED COMPOSITES: PROBLEMS AND PROSPECTS" that was held in Kiev, Ukraine, during the period of June 2 - 6, 1997, in collaboration with Professor S. A. Firstov of the Frantsevich Institute for Problems of Materials Science, National Academy of Sciences, Kiev, Ukraine. In this context I wish to convey special thanks to Dr. J. A. Raussell-Colom, NATO Programme Director for Priority Area on High Technology, for his kind efforts and continuous guidance in the course of organizing the Workshop. I appreciate sincerely the ...
This volume contains the papers presented at the NATO Advanced Research Workshop on Localization and Propagation o[ Classical Waves in Random and Periodic Media held in Aghia Pelaghia, Heraklion, Crete, May 26- 30, 1992. The workshop's goal was to bring together theorists and experimentalists from two related areas, localization and photonic band gaps, to highlight their common interests. The objectives of the workshop were (i) to assess the state of-the-art in experimental and theoretical studies of structures exhibiting classical wave band gaps and/or localization, (ii) to discuss how such structures can be fabricated to improve technologies in different areas of physics and engineering, and (iii) to identify problems and set goals for further research. Studies of the propagation of electromagnetic (EM) waves in periodic and/or disordered dielectric structures (photonic band gap structures) have been and continue to be a dynamic area of research. Anderson localization of EM waves in disordered dielectric structures is of fundamental interest where the strong ei-ei interaction efFects entering the eIectron-localization are absent.