Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Auroral Plasma Physics
  • Language: en
  • Pages: 494

Auroral Plasma Physics

This volume gives a broad synthesis of the current knowledge and understanding of the plasma physics behind the aurora. The aurora is not only one of the most spectacular natural phenomena on Earth, but the underlying physical processes are expected to be ubiquitous in the plasma universe. Recognizing the enormous progress made over the last decade) through in situ and groundbased measurements as well as theoretical modelling, it seemed timely to write the first comprehensive and integrated book on the subject. Recent advances concern the clarification of the nature of the acceleration process of the electrons that are responsible for the visible aurora, the recognition of the fundamental role of the large-scale current systems in organizing the auroral morphology, and of the interplay between particles and electromagnetic fields.

The Transient Radio Sky
  • Language: en
  • Pages: 195

The Transient Radio Sky

The high time-resolution radio sky represents unexplored astronomical territory. This thesis presents a study of the transient radio sky, focussing on millisecond scales. As such, the work is concerned primarily with neutron stars. In particular this research concentrates on a recently identified group of neutron stars, known as RRATs, which exhibit radio bursts every few minutes to every few hours. After analysing neutron star birthrates, a re-analysis of the Parkes Multibeam Pulsar Survey is described which has resulted in the discovery of 19 new transient radio sources. Of these, 12 have been seen to repeat and a follow-up campaign of observations has been undertaken. These studies have greatly increased our knowledge of the rotational properties of RRATs and enable us to conclude that they are pulsars with extreme nulling and/or pulse-to-pulse modulation. Although the evolution of neutron stars post-supernova is not yet understood, it seems that RRATs fit into the emerging picture in which pulsar magnetospheres switch between stable configurations.

Auroral Phenomenology and Magnetospheric Processes
  • Language: en
  • Pages: 794

Auroral Phenomenology and Magnetospheric Processes

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 197. Many of the most basic aspects of the aurora remain unexplained. While in the past terrestrial and planetary auroras have been largely treated in separate books, Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets takes a holistic approach, treating the aurora as a fundamental process and discussing the phenomenology, physics, and relationship with the respective planetary magnetospheres in one volume. While there are some behaviors common in auroras of the different planets, there are also striking differences that test our basic understanding of auroral processes. Th...

Cross-Scale Coupling in Space Plasmas
  • Language: en
  • Pages: 305

Cross-Scale Coupling in Space Plasmas

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 93. A principal goal of space plasma researchers is to understand the influence of various transport processes on each other, even when such processes operate at widely varying spatial and temporal scales. We know that large-scale plasma flows in space lead to unstable conditions with small spatial (centimeters to meters) and temporal (microseconds to seconds) scales. The large-scale flows, for example in the magnetosphere-ionosphere system, involve scale lengths of kilometers to several Earth radii and temporal scales of minutes to hours. We must know specific contextual answers to the questions: Do the small-scale waves (microprocesses) modify the large-scale flows? Do these modifications significantly affect the transport of mass, momentum, and energy? How can such coupling processes and their influences be revealed observationally? And, perhaps most challenging of all, how do we incorporate the microprocesses into theoretical models of larger-scale space plasma transport?

The Dynamic Magnetosphere
  • Language: en
  • Pages: 367

The Dynamic Magnetosphere

Despite the plethora of monographs published in recent years, few cover recent progress in magnetospheric physics in broad areas of research. While a topical focus is important to in-depth views at a problem, a broad overview of our field is also needed. The volume answers to the latter need. With the collection of articles written by leading scientists, the contributions contained in the book describe latest research results in solar wind-magnetosphere interaction, magnetospheric substorms, magnetosphere-ionosphere coupling, transport phenomena in the plasma sheet, wave and particle dynamics in the ring current and radiation belts, and extra-terrestrial magnetospheric systems. In addition to its breadth and timeliness, the book highlights innovative methods and techniques to study the geospace.

The Magnetodiscs and Aurorae of Giant Planets
  • Language: en
  • Pages: 332

The Magnetodiscs and Aurorae of Giant Planets

  • Type: Book
  • -
  • Published: 2015-10-14
  • -
  • Publisher: Springer

Readers will find grouped together here the most recent observations, current theoretical models and present understanding of the coupled atmosphere, magnetosphere and solar wind system. The book begins with a general discussion of mass, energy and momentum transport in magnetodiscs. The physics of partially ionized plasmas of the giant planet magnetodiscs is of general interest throughout the field of space physics, heliophysics and astrophysical plasmas; therefore, understanding the basic physical processes associated with magnetodiscs has universal applications. The second chapter characterizes the solar wind interaction and auroral responses to solar wind driven dynamics. The third chapter describes the role of magnetic reconnection and the effects on plasma transport. Finally, the last chapter characterizes the spectral and spatial properties of auroral emissions, distinguishing between solar wind drivers and internal driving mechanisms. The in-depth reviews provide an excellent reference for future research in this discipline.

Low-Frequency Waves in Space Plasmas
  • Language: en
  • Pages: 524

Low-Frequency Waves in Space Plasmas

Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun’s atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered que...

Geospace Electromagnetic Waves and Radiation
  • Language: en
  • Pages: 356

Geospace Electromagnetic Waves and Radiation

The contributions gathered in this volume provide introductions to current problems in geospace electromagnetic radiation, guides to the associated literature and tutorial reviews of the relevant space physics. Students and scientists working on various aspects of the terrestrial aurora or magnetospheric and near-Earth heliospheric high-frequency waves will find this volume an indispensable companion for their studies.

Exploring Venus as a Terrestrial Planet
  • Language: en
  • Pages: 243

Exploring Venus as a Terrestrial Planet

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 176. With the search for extra-solar planets in full gear, it has become essential to gain a more detailed understanding of the evolution of the other earth-like planets in our own solar system. Space missions to Venus, including the Soviet Veneras, Pioneer Venus, and Magellan, provided a wealth of information about this planet' enigmatic surface and atmosphere, but left many fundamental questions about its origin and evolution unanswered. This book discusses how the study of Venus will aid our understanding of terrestrial and extra-solar planet evolution, with particular reference to surface and interior processes, atmospheric circulation, chemistry, and aeronomy. Incorporating results from the recent European Venus Express mission, Exploring Venus as a Terrestrial Planet examines the open questions and relates them to Earth and other terrestrial planets. The goal is to stimulate thinking about those broader issues as the new Venus data arrive.

Magnetospheric Current Systems
  • Language: en
  • Pages: 398

Magnetospheric Current Systems

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 118. The magnetosphere is an open system that interacts with the solar wind. In this system, solar wind energy continuously permeates different regions of the magnetosphere through electromagnetic processes, which we can well describe in terms of current systems. In fact, our ability to use various methods to study magnetospheric current systems has recently prompted significant progress in our understanding of the phenomenon. Unprecedented coverage of satellite and ground?]based observations has advanced global approaches to magnetospheric current systems, whereas advanced measurements of electromagnetic fields and particles have brought new insights about micro?]processes. Increased computer capabilities have enabled us to simulate the dynamics not only of the terrestrial magnetosphere but also the magnetospheres of other planets. Based on such developments, the present volume revisits outstanding issues about magnetospheric current systems.