You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the proceedings of the 6th International Workshopon Design, Modeling, and Evaluation of Cyber Physical Systems, CyPhy2016, held in conjunction with ESWeek 2016, in Pittsburgh, PA, USA, inOctober 2016. The 9 papers presented in this volume were carefully reviewed and selected from 14 submissions. They broadly interpret, from a diverse set of disciplines, the modeling, simulation, and evaluation of cyber-physical systems with a particular focus on techniques and components to enable and support virtual prototyping and testing.
In this book the author explains domain engineering and the underlying science, and he then shows how we can derive requirements prescriptions for computing systems from domain descriptions. A further motivation is to present domain descriptions, requirements prescriptions, and software design specifications as mathematical quantities. The author's maxim is that before software can be designed we must understand its requirements, and before requirements can be prescribed we must analyse and describe the domain for which the software is intended. He does this by focusing on what it takes to analyse and describe domains. By a domain we understand a rationally describable discrete dynamics segm...
As computers increasingly control the systems and services we depend upon within our daily lives like transport, communications, and the media, ensuring these systems function correctly is of utmost importance. This book consists of twelve chapters and one historical account that were presented at a workshop in London in 2015, marking the 25th anniversary of the European ESPRIT Basic Research project ‘ProCoS’ (Provably Correct Systems). The ProCoS I and II projects pioneered and accelerated the automation of verification techniques, resulting in a wide range of applications within many trades and sectors such as aerospace, electronics, communications, and retail. The following topics are covered: An historical account of the ProCoS project Hybrid Systems Correctness of Concurrent Algorithms Interfaces and Linking Automatic Verification Run-time Assertions Checking Formal and Semi-Formal Methods Provably Correct Systems provides researchers, designers and engineers with a complete overview of the ProCoS initiative, past and present, and explores current developments and perspectives within the field.
This proceedings volume examines parameterized systems, model checking, applications, static analysis, concurrent/distributed systems, symbolic execution, abstraction, interpolation, trust, and reputation.
This book constitutes the refereed proceedings of the 12th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2005, held Austria in March/April 2006 as part of ETAPS. The 30 revised full research papers and four revised tool demonstration papers presented together with one invited paper were carefully reviewed and selected from a total of 118 submissions. The papers are organized in topical sections.
This book constitutes the refereed proceedings of the 8th International Workshop on Hybrid Systems: Computation and Control, HSCC 2005, held in Zurich, Switzerland in March 2005. The 40 revised full papers presented together with 2 invited papers and the abstract of an invited talk were carefully reviewed and selected from 91 submissions. The papers focus on modeling, analysis, and implementation of dynamic and reactive systems involving both discrete and continuous behaviors. Among the topics addressed are tools for analysis and verification, control and optimization, modeling, engineering applications, and emerging directions in programming language support and implementation.
This book constitutes the refereed proceedings of the 10th International Conference on Hybrid Systems: Computation and Control, HSCC 2007, held in Pisa, Italy in April 2007. The 44 revised full papers and 39 revised short papers presented together with the abstracts of 3 keynote talks were carefully reviewed and selected from 167 submissions. Among the topics addressed are models of heterogeneous systems, computability and complexity issues, real-time computing and control, embedded and resource-aware control, control and estimation over wireless networks, tools for analysis, verification, control, and design, programming languages support and implementation, applications, including automotive, communication networks, avionics, energy systems, transportation networks, biology and other sciences, manufacturing, and robotics.
This book constitutes the proceedings of the 7th International Workshop on Design, Modeling, and Evaluation of Cyber Physical Systems, CyPhy2017, held in conjunction with ESWeek 2017, in Seoul, South Korea, in October 2017. The 10 papers presented together with 1 extended and 1 invited abstracts in this volume were carefully reviewed and selected from 16 submissions. The conference presents a wide range of domains including robotics; smart homes, vehicles, and buildings; medical implants; and future-generation sensor networks.
Robot Motion Control 2009 presents very recent results in robot motion and control. Forty short papers have been chosen from those presented at the sixth International Workshop on Robot Motion and Control held in Poland in June 2009. The authors of these papers have been carefully selected and represent leading institutions in this field. The following recent developments are discussed: design of trajectory planning schemes for holonomic and nonholonomic systems with optimization of energy, torque limitations and other factors, new control algorithms for industrial robots, nonholonomic systems and legged robots, different applications of robotic systems in industry and everyday life, like medicine, education, entertainment and others, multiagent systems consisting of mobile and flying robots with their applications. The book is suitable for graduate students of automation and robotics, informatics and management, mechatronics, electronics and production engineering systems as well as scientists and researchers working in these fields.
Today, many embedded or cyber-physical systems, e.g., in the automotive domain, comprise several control applications, sharing the same platform. It is well known that such resource sharing leads to complex temporal behaviors that degrades the quality of control, and more importantly, may even jeopardize stability in the worst case, if not properly taken into account. In this thesis, we consider embedded control or cyber-physical systems, where several control applications share the same processing unit. The focus is on the control-scheduling co-design problem, where the controller and scheduling parameters are jointly optimized. The fundamental difference between control applications and tr...