You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book explains the development of theoretical computer science in its early stages, specifically from 1965 to 1990. The author is among the pioneers of theoretical computer science, and he guides the reader through the early stages of development of this new discipline. He explains the origins of the field, arising from disciplines such as logic, mathematics, and electronics, and he describes the evolution of the key principles of computing in strands such as computability, algorithms, and programming. But mainly it's a story about people – pioneers with diverse backgrounds and characters came together to overcome philosophical and institutional challenges and build a community. They collaborated on research efforts, they established schools and conferences, they developed the first related university courses, they taught generations of future researchers and practitioners, and they set up the key publications to communicate and archive their knowledge. The book is a fascinating insight into the field as it existed and evolved, it will be valuable reading for anyone interested in the history of computing.
Graph algorithms are easy to visualize and indeed there already exists a variety of packages to animate the dynamics when solving problems from graph theory. Still it can be difficult to understand the ideas behind the algorithm from the dynamic display alone. CATBox consists of a software system for animating graph algorithms and a course book which we developed simultaneously. The software system presents both the algorithm and the graph and puts the user always in control of the actual code that is executed. In the course book, intended for readers at advanced undergraduate or graduate level, computer exercises and examples replace the usual static pictures of algorithm dynamics. For this volume we have chosen solely algorithms for classical problems from combinatorial optimization, such as minimum spanning trees, shortest paths, maximum flows, minimum cost flows, weighted and unweighted matchings both for bipartite and non-bipartite graphs. Find more information at http://schliep.org/CATBox/.
This book highlights new and original contributions on Graph Theory and Combinatorial Optimization both from the theoretical point of view and from applications in all fields. The book chapters describe models and methods based on graphs, structural properties, discrete optimization, network optimization, mixed-integer programming, heuristics, meta-heuristics, math-heuristics, and exact methods as well as applications. The book collects selected contributions from the CTW2020 international conference (18th Cologne-Twente Workshop on Graphs and Combinatorial Optimization), held online on September 14-16, 2020. The conference was organized by IASI-CNR with the contribution of University of Roma Tre, University Roma Tor Vergata, and CNRS-LIX and with the support of AIRO. It is addressed to researchers, PhD students, and practitioners in the fields of Graph Theory, Discrete Mathematics, Combinatorial Optimization, and Operations Research.
This volume contains the papers selected for presentation at IPCO 2002, the NinthInternationalConferenceonIntegerProgrammingandCombinatorial- timization, Cambridge, MA (USA), May 27–29, 2002. The IPCO series of c- ferences highlights recent developments in theory, computation, and application of integer programming and combinatorial optimization. IPCO was established in 1988 when the ?rst IPCO program committee was formed. IPCO is held every year in which no International Symposium on Ma- ematical Programming (ISMP) takes places. The ISMP is triennial, so IPCO conferences are held twice in every three-year period. The eight previous IPCO conferences were held in Waterloo (Canada) 1990, Pit...
Martin Grötschel is one of the most influential mathematicians of our time. He has received numerous honors and holds a number of key positions in the international mathematical community. He celebrated his 65th birthday on September 10, 2013. Martin Grötschel’s doctoral descendant tree 1983–2012, i.e., the first 30 years, features 39 children, 74 grandchildren, 24 great-grandchildren and 2 great-great-grandchildren, a total of 139 doctoral descendants. This book starts with a personal tribute to Martin Grötschel by the editors (Part I), a contribution by his very special “predecessor” Manfred Padberg on “Facets and Rank of Integer Polyhedra” (Part II), and the doctoral descen...
Computational complexity is one of the most beautiful fields of modern mathematics, and it is increasingly relevant to other sciences ranging from physics to biology. But this beauty is often buried underneath layers of unnecessary formalism, and exciting recent results like interactive proofs, phase transitions, and quantum computing are usually considered too advanced for the typical student. This book bridges these gaps by explaining the deep ideas of theoretical computer science in a clear and enjoyable fashion, making them accessible to non-computer scientists and to computer scientists who finally want to appreciate their field from a new point of view. The authors start with a lucid a...
This volume presents the proceedings of the 10th International Workshop on Combinatorial Image Analysis, held December 1–3, 2004, in Auckland, New Zealand. Prior meetings took place in Paris (France, 1991), Ube (Japan, 1992), Washington DC (USA, 1994), Lyon (France, 1995), Hiroshima (Japan, 1997), Madras (India, 1999), Caen (France, 2000), Philadelphia (USA, 2001), and - lermo (Italy, 2003). For this workshop we received 86 submitted papers from 23 countries. Each paper was evaluated by at least two independent referees. We selected 55 papers for the conference. Three invited lectures by Vladimir Kovalevsky (Berlin), Akira Nakamura (Hiroshima), and Maurice Nivat (Paris) completed the progr...
Today's most commonly used circuit models increasingly tend to lose their validity in circuit simulation due to rapid technological developments, miniaturization and increased complexity of integrated circuits. The starting point of this thesis was to tackle these challenges by refining the critical parts of the circuit by combining circuit simulation directly with distributed device models. The approach set out in this thesis couples partial differential equations for electromagnetic devices - modeled by Maxwell's equations -, to differential-algebraic equations, which describe basic circuit elements including memristors and the circuit's topology. First, Maxwell's equations are spatially d...
One ofthe most important aspects in research fields where mathematics is "applied is the construction of a formal model of a real system. As for structural relations, graphs have turned out to provide the most appropriate tool for setting up the mathematical model. This is certainly one of the reasons for the rapid expansion in graph theory during the last decades. Furthermore, in recent years it also became clear that the two disciplines of graph theory and computer science have very much in common, and that each one has been capable of assisting significantly in the development of the other. On one hand, graph theorists have found that many of their problems can be solved by the use of com...