You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume gives the latest advances in optimization and optimal control which are the main part of applied mathematics. It covers various topics of optimization, optimal control and operations research.
During the last three decades, breakthroughs in computer technology have made a tremendous impact on optimization. In particular, parallel computing has made it possible to solve larger and computationally more difficult prob lems. This volume contains mainly lecture notes from a Nordic Summer School held at the Linkoping Institute of Technology, Sweden in August 1995. In order to make the book more complete, a few authors were invited to contribute chapters that were not part of the course on this first occasion. The purpose of this Nordic course in advanced studies was three-fold. One goal was to introduce the students to the new achievements in a new and very active field, bring them clos...
This work is concerned with theoretical developments in the area of mathematical programming, development of new algorithms and software and their applications in science and industry. It aims to expose recent mathematical developments to a larger audience in science and industry.
Combinatorial and global optimization problems appear in a wide range of applications in operations research, engineering, biological science, and computer science. In combinatorial optimization and graph theory, many approaches have been developed that link the discrete universe to the continuous universe through geometric, analytic, and algebraic techniques. Such techniques include global optimization formulations, semidefinite programming, and spectral theory. Recent major successes based on these approaches include interior point algorithms for linear and discrete problems, the celebrated Goemans-Williamson relaxation of the maximum cut problem, and the Du-Hwang solution of the Gilbert-Pollak conjecture. Since integer constraints are equivalent to nonconvex constraints, the fundamental difference between classes of optimization problems is not between discrete and continuous problems but between convex and nonconvex optimization problems. This volume is a selection of refereed papers based on talks presented at a conference on “Combinatorial and Global Optimization” held at Crete, Greece.
Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches covers recent developments in optimization techniques for addressing several computational chemistry and biology problems. A tantalizing problem that cuts across the fields of computational chemistry, biology, medicine, engineering and applied mathematics is how proteins fold. Global and local optimization provide a systematic framework of conformational searches for the prediction of three-dimensional protein structures that represent the global minimum free energy, as well as low-energy biomolecular conformations. Each contribution in the book is essentially expository in nature, but of scholarly treatment. The topics covered include advances in local and global optimization approaches for molecular dynamics and modeling, distance geometry, protein folding, molecular structure refinement, protein and drug design, and molecular and peptide docking. Audience: The book is addressed not only to researchers in mathematical programming, but to all scientists in various disciplines who use optimization methods in solving problems in computational chemistry and biology.
In the early fifties, applied mathematicians, engineers and economists started to pay c10se attention to the optimization problems in which another (lower-Ievel) optimization problem arises as a side constraint. One of the motivating factors was the concept of the Stackelberg solution in game theory, together with its economic applications. Other problems have been encountered in the seventies in natural sciences and engineering. Many of them are of practical importance and have been extensively studied, mainly from the theoretical point of view. Later, applications to mechanics and network design have lead to an extension of the problem formulation: Constraints in form of variation al inequ...
Boundary value problems which have variational expressions in form of inequal ities can be divided into two main classes. The class of boundary value prob lems (BVPs) leading to variational inequalities and the class of BVPs leading to hemivariational inequalities. The first class is related to convex energy functions and has being studied over the last forty years and the second class is related to nonconvex energy functions and has a shorter research "life" beginning with the works of the second author of the present book in the year 1981. Nevertheless a variety of important results have been produced within the framework of the theory of hemivariational inequalities and their numerical tr...
Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air line crew scheduling, corporate planning, computer-aided design and man ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems,...
Optimization problems abound in most fields of science, engineering, and tech nology. In many of these problems it is necessary to compute the global optimum (or a good approximation) of a multivariable function. The variables that define the function to be optimized can be continuous and/or discrete and, in addition, many times satisfy certain constraints. Global optimization problems belong to the complexity class of NP-hard prob lems. Such problems are very difficult to solve. Traditional descent optimization algorithms based on local information are not adequate for solving these problems. In most cases of practical interest the number of local optima increases, on the aver age, exponent...
This book constitutes the refereed proceedings of the 4th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR 2007, held in Brussels, Belgium in May 2007. It covers methodological and foundational issues from AI, OR, and algorithmics as well as applications to the solution of combinatorial optimization problems in various fields via constraint programming.