You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Density Functional Theory (DFT) has firmly established itself as the workhorse for atomic-level simulations of condensed phases, pure or composite materials and quantum chemical systems. This work offers a rigorous and detailed introduction to the foundations of this theory, up to and including such advanced topics as orbital-dependent functionals as well as both time-dependent and relativistic DFT. Given the many ramifications of contemporary DFT, the text concentrates on the self-contained presentation of the basics of the most widely used DFT variants: this implies a thorough discussion of the corresponding existence theorems and effective single particle equations, as well as of key appr...
Density Functional Theory is a rapidly developing branch of many-particle physics that has found applications in atomic, molecular, solid-state and nuclear physics. This book describes the conceptual framework of density functional theory and discusses in detail the derivation of explicit functionals from first principles as well as their application to Coulomb systems. Both non-relativistic and relativistic systems are treated. The connection of density functional theory with other many-body methods is highlighted. The presentation is self-contained; the book is, thus, well suited for a graduate course on density functional theory.
This book is the first of a series covering the major topics that are taught in university courses in Theoretical Physics: Mechanics, Electrodynamics, Quantum Theory and Statistical Physics. After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of the last sections is advanced. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. It contains: A collection of 74 problems with detailed step-by-step guidance towards the solutions, a collection of comments and additional mathematical details in support of the main text, a complete presentation of all the mathematical tools needed.
The first Nato Advanced Studies Institute entirely devoted to density functional theory was held in Portugal in September 1983. The proceedings of this School, publis hed in early 1985, is still used as a standard reference covering the basic development of the theory and applications in atomic, molecular, solid state and nuclear physics. Ho wever, astonishing progress has been achieved in the intervening years: The foundations of the theory have been extended to cover excited states and time dependent problems more fully, density functional theory of classical liquids and superconducting systems has been addressed and extensions to relativistic, that is, field theoretical systems, as well a...
The last few years have seen some remarkable advances in the understanding of atomic phenomena. It is now possible to isolate atomic systems in traps, measure in coincidence the fragments of collision processes, routinely produce, and study multicharged ions. One can look at bulk matter in such a way that the fundamental atomic character is clearly evident and work has begun to tease out the properties of anti matter. The papers in this book reflect many aspects of modem Atomic Physics. They correspond to the invited talks at a conference dedicated to the study of "New Directions in Atomic Physics," which took place in Magdalene College, Cambridge in July of 1998. The meeting was designed as...
This book introduces the scattering theory of nonrelativistic systems, a standard tool for interpreting collision experiments with quantum particles at energies not too high. The goal is to explore the interaction between particles and their properties. The authors cover the basics of the theory through a detailed discussion of elastic scattering using the stationary Schrödinger equation and the Lippmann-Schwinger equation. These remarks are supplemented by a consideration of the time-dependent formulation of scattering theory. Selection rules for effective cross sections due to symmetries conditioned by the structure of the interparticle forces and the scattering of spin-polarized particle...
This book is the first of a series covering the major topics that are taught in university courses in Theoretical Physics: Mechanics, Electrodynamics, Quantum Theory and Statistical Physics. After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of the last sections is advanced. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. It contains: A collection of 74 problems with detailed step-by-step guidance towards the solutions, a collection of comments and additional mathematical details in support of the main text, a complete presentation of all the mathematical tools needed.
Density Functional Theory (DFT) first established it's theoretical footing in the 1960s from the framework of Hohenberg-Kohn theorems. DFT has since seen much development in evaluation techniques as well as application in solving problems in Physics, Mathematics and Chemistry.This review volume, part of the IMS Lecture Notes Series, is a collection of contributions from the September 2019 Workshop on the topic, held in the Institute for Mathematical Sciences, National University of Singapore.With contributions from prominent Mathematicians, Physicists, and Chemists, the volume is a blend of comprehensive review articles on the Mathematical and the Physicochemical aspects of DFT and shorter contributions on particular themes, including numerical implementations.The book will be a useful reference for advanced undergraduate and postgraduate students as well as researchers.
This book traces the parallel paths of physics and astronomy at the University of Pennsylvania, starting with their genesis in the 18th century, through the rising stature of both departments in the 20th century, and concluding with their unification in 1994. Along the way we meet David Rittenhouse, who observed the transit of Venus in 1769, Charles Doolittle, whose remarkable beard would freeze to his telescope on cold nights, Gaylord Harnwell, who transformed first the physics department and then the entire university, and Raymond Davis, who uncovered a mystery in the middle of the sun. The stories are tragic (Arthur Goodspeed failed to discover X-rays through inattention), horrifying (Dicran Kabakjian poisoned an entire neighborhood), and celebratory (three Penn physicists received the Nobel Prize in the late 20th Century). The reader will gain an appreciation, not just of the history of one institution, but of the ways these two disciplines both intersect and complement each other.