You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book reviews the use of spectroscopic and related methods to investigate the complex structures and mechanisms of biological inorganic systems that contain metals. Each chapter presents an overview of the technique including relevant theory, clearly explains what it is and how it works and then presents how the technique is actually used to evaluate biological structures. Practical examples and problems are included to illustrate each technique and to aid understanding. Designed for students and researchers who want to learn both the basics, and more advanced aspects of bioinorganic chemistry. - Many colour illustrations enable easier visualization of molecular mechanisms and structures - Worked examples and problems are included to illustrate and test the reader's understanding of each technique - Written by a multi-author team who use and teach the most important techniques used today to analyse complex biological structures
Porphyrins, phthalocyanines and their numerous analogs and derivatives are materials of tremendous importance in chemistry, materials science, physics, biology and medicine. They are the red color in blood (heme) and the green in leaves (chlorophyll); they are also excellent ligands that can coordinate with almost every metal in the Periodic Table. Grounded in natural systems, porphyrins are incredibly versatile and can be modified in many ways; each new modification yields derivatives, demonstrating new chemistry, physics and biology, with a vast array of medicinal and technical applications.As porphyrins are currently employed as platforms for study of theoretical principles and applicatio...
This is the seventh set of Handbook of Porphyrin Science.Porphyrins, phthalocyanines and their numerous analogue and derivatives are materials of tremendous importance in chemistry, materials science, physics, biology and medicine. They are the red color in blood (heme) and the green in leaves (chlorophyll); they are also excellent ligands that can coordinate with almost every metal in the Periodic Table. Grounded in natural systems, porphyrins are incredibly versatile and can be modified in many ways; each new modification yields derivatives, demonstrating new chemistry, physics and biology, with a vast array of medicinal and technical applications.As porphyrins are currently employed as pl...
This is the sixth set of Handbook of Porphyrin Science.This 5-volume set provides a comprehensive review of the most up-to-date research on porphyrin, heme and chlorophyll biochemistry, as well as applications to biomedicine and bio-inspired energy. In-depth coverage of topics along with perspectives on outstanding questions and future research directions by the authors make these volumes an essential resource for both beginning and advanced investigators in the field. It is also suitable for non-experts in porphyrin, who wish to have an overview of the fundamental discoveries and breakthroughs in the porphyrin arena related to medicine and bio-inspired energy.Bringing together the biochemistry of porphyrin-binding proteins and their clinical relevance and applications to medicine and renewable energy, this set provides readers with an integrated coverage of porphyrin biochemistry. At the same time, it challenges readers with new questions and perspectives of research regarding the role of porphyrin biochemistry in the future of medicine and renewable energy.
This is the fourth set of Handbook of Porphyrin Science.Porphyrins, phthalocyanines and their numerous analogues and derivatives are materials of tremendous importance in chemistry, materials science, physics, biology and medicine. They are the red color in blood (heme) and the green in leaves (chlorophyll); they are also excellent ligands that can coordinate with almost every metal in the Periodic Table. Grounded in natural systems, porphyrins are incredibly versatile and can be modified in many ways; each new modification yields derivatives, demonstrating new chemistry, physics and biology, with a vast array of medicinal and technical applications.As porphyrins are currently employed as pl...
Porphyrins, phthalocyanines and their numerous analogs and derivatives are materials of tremendous importance in chemistry, materials science, physics, biology and medicine. They comprise the red color in blood (heme) and the green in leaves (chlorophyll); they are also excellent ligands that can coordinate with almost every metal in the Periodic Table. Grounded in natural systems, porphyrins are incredibly versatile and can be modified in many ways; each new modification yields derivatives demonstrating new chemistry, physics and biology, with a vast array of medicinal and technical applications.Because porphyrins are currently employed as platforms for study of theoretical principles and a...
This is the fifth set of Handbook of Porphyrin Science.Porphyrins, phthalocyanines and their numerous analogues and derivatives are materials of tremendous importance in chemistry, materials science, physics, biology and medicine. They are the red color in blood (heme) and the green in leaves (chlorophyll); they are also excellent ligands that can coordinate with almost every metal in the Periodic Table. Grounded in natural systems, porphyrins are incredibly versatile and can be modified in many ways; each new modification yields derivatives, demonstrating new chemistry, physics and biology, with a vast array of medicinal and technical applications.As porphyrins are currently employed as pla...
This book presents specific key natural and artificial systems that are promising biocatalysts in the areas of health, agriculture, environment and energy. It provides a comprehensive account of the state of the art of these systems and outlines the significant progress made in the last decade using these systems to develop innovative, sustainable and environmentally friendly solutions. Chapters from expert contributors explore how natural enzymes and artificial systems tackle specific targets such as: climate change, carbon footprint and economy and carbon dioxide utilisation; nitrogen footprint and fixation and nitrous oxide mitigation; hydrogen production, fuel cells and energy from bacte...
The increasing demand for energy worldwide, currently evaluated at 13 terawatts per year, has triggered a surge in research on alternative energy sources more sustainable and environmentally friendly. Bio-catalyzed electrochemical systems (BESs) are a rapidly growing biotechnology for sustainable production of bioenergy and/or value-added bioproducts using microorganisms as catalysts for bioelectrochemical reactions at the electrode surface. In the last decades, this biotechnology has been intensively studied and developed as a flexible and practical platform for multiple applications such as electricity production, wastewater treatment, pollutants remediation, desalination and production of...