You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This classic book is an introduction to dynamic programming, presented by the scientist who coined the term and developed the theory in its early stages. In Dynamic Programming, Richard E. Bellman introduces his groundbreaking theory and furnishes a new and versatile mathematical tool for the treatment of many complex problems, both within and outside of the discipline. The book is written at a moderate mathematical level, requiring only a basic foundation in mathematics, including calculus. The applications formulated and analyzed in such diverse fields as mathematical economics, logistics, scheduling theory, communication theory, and control processes are as relevant today as they were when Bellman first presented them. A new introduction by Stuart Dreyfus reviews Bellman's later work on dynamic programming and identifies important research areas that have profited from the application of Bellman's theory.
This comprehensive study of dynamic programming applied to numerical solution of optimization problems. It will interest aerodynamic, control, and industrial engineers, numerical analysts, and computer specialists, applied mathematicians, economists, and operations and systems analysts. Originally published in 1962. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This volume is a collection of some of the most significant mathematical works of Prof Richard E Bellman. Ten areas of Prof Bellman's mathematical research were selected by his co-workers for this volume. Each chapter starts with an introductory comment on the significance of Bellman's contribution. Some important mathematical theories are put forward and their applications in physics and biology such as the mathematical aspect of chemotherapy and the analysis of biological systems are included in this book.
Designed to introduce students to the theory and applications of differential equations and to help them formulate scientific problems in terms of such equations, this undergraduate-level text emphasizes applications to problems in biology, economics, engineering, and physics. This edition also includes material on discontinuous solutions, Riccati and Euler equations, and linear difference equations.
Since the elassie work on inequalities by HARDY, LITTLEWOOD, and P6LYA in 1934, an enonnous amount of effort has been devoted to the sharpening and extension of the elassieal inequalities, to the discovery of new types of inequalities, and to the application of inqualities in many parts of analysis. As examples, let us eite the fields of ordinary and partial differential equations, whieh are dominated by inequalities and variational prineiples involving functions and their derivatives; the many applications of linear inequalities to game theory and mathe matieal economics, which have triggered a renewed interest in con vexity and moment-space theory; and the growing uses of digital com puter...
Graduate students receive a stimulating introduction to analytical approximation techniques for solving differential equations in this text, which introduces scientifically significant problems and indicates useful solutions. 1966 edition.
This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1963.
The classical theory of the Laplace Transform can open many new avenues when viewed from a modern, semi-classical point of view. In this book, the author re-examines the Laplace Transform and presents a study of many of the applications to differential equations, differential-difference equations and the renewal equation.
Suitable for advanced undergraduates and graduate students, this was the first English-language text to offer detailed coverage of boundedness, stability, and asymptotic behavior of linear and nonlinear differential equations. It remains a classic guide, featuring material from original research papers, including the author's own studies. The linear equation with constant and almost-constant coefficients receives in-depth attention that includes aspects of matrix theory. No previous acquaintance with the theory is necessary, since author Richard Bellman derives the results in matrix theory from the beginning. In regard to the stability of nonlinear systems, results of the linear theory are u...
In this book, the major ideas behind Organic Computing are delineated, together with a sparse sample of computational projects undertaken in this new field. Biological metaphors include evolution, neural networks, gene-regulatory networks, networks of brain modules, hormone system, insect swarms, and ant colonies. Applications are as diverse as system design, optimization, artificial growth, task allocation, clustering, routing, face recognition, and sign language understanding.