Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Holomorphic Spaces
  • Language: en
  • Pages: 490

Holomorphic Spaces

Expository articles describing the role Hardy spaces, Bergman spaces, Dirichlet spaces, and Hankel and Toeplitz operators play in modern analysis.

Nonlinear Dirac Equation: Spectral Stability of Solitary Waves
  • Language: en
  • Pages: 306

Nonlinear Dirac Equation: Spectral Stability of Solitary Waves

This monograph gives a comprehensive treatment of spectral (linear) stability of weakly relativistic solitary waves in the nonlinear Dirac equation. It turns out that the instability is not an intrinsic property of the Dirac equation that is only resolved in the framework of the second quantization with the Dirac sea hypothesis. Whereas general results about the Dirac-Maxwell and similar equations are not yet available, we can consider the Dirac equation with scalar self-interaction, the model first introduced in 1938. In this book we show that in particular cases solitary waves in this model may be spectrally stable (no linear instability). This result is the first step towards proving asym...

Personnel Management in State and Local Governments
  • Language: en
  • Pages: 88

Personnel Management in State and Local Governments

  • Type: Book
  • -
  • Published: 1974
  • -
  • Publisher: Unknown

None

Interpolation Theory and Applications
  • Language: en
  • Pages: 370

Interpolation Theory and Applications

This volume contains the Proceedings of the Conference on Interpolation Theory and Applications in honor of Professor Michael Cwikel (Miami, FL, 2006). The central topic of this book is interpolation theory in its broadest sense, with special attention to its applications to analysis. The articles include applications to classical analysis, harmonic analysis, partial differential equations, function spaces, image processing, geometry of Banach spaces, and more. This volume emphasizes remarkable connections between several branches of pure and applied analysis. Graduate students and researchers in analysis will find it very useful.

Jordan Triple Systems in Complex and Functional Analysis
  • Language: en
  • Pages: 577

Jordan Triple Systems in Complex and Functional Analysis

This book is a systematic account of the impressive developments in the theory of symmetric manifolds achieved over the past 50 years. It contains detailed and friendly, but rigorous, proofs of the key results in the theory. Milestones are the study of the group of holomomorphic automorphisms of bounded domains in a complex Banach space (Vigué and Upmeier in the late 1970s), Kaup's theorem on the equivalence of the categories of symmetric Banach manifolds and that of hermitian Jordan triple systems, and the culminating point in the process: the Riemann mapping theorem for complex Banach spaces (Kaup, 1982). This led to the introduction of wide classes of Banach spaces known as JB∗-triples and JBW∗-triples whose geometry has been thoroughly studied by several outstanding mathematicians in the late 1980s. The book presents a good example of fruitful interaction between different branches of mathematics, making it attractive for mathematicians interested in various fields such as algebra, differential geometry and, of course, complex and functional analysis.

Linear and Quasilinear Parabolic Systems: Sobolev Space Theory
  • Language: en
  • Pages: 241

Linear and Quasilinear Parabolic Systems: Sobolev Space Theory

This monograph presents a systematic theory of weak solutions in Hilbert-Sobolev spaces of initial-boundary value problems for parabolic systems of partial differential equations with general essential and natural boundary conditions and minimal hypotheses on coefficients. Applications to quasilinear systems are given, including local existence for large data, global existence near an attractor, the Leray and Hopf theorems for the Navier-Stokes equations and results concerning invariant regions. Supplementary material is provided, including a self-contained treatment of the calculus of Sobolev functions on the boundaries of Lipschitz domains and a thorough discussion of measurability considerations for elements of Bochner-Sobolev spaces. This book will be particularly useful both for researchers requiring accessible and broadly applicable formulations of standard results as well as for students preparing for research in applied analysis. Readers should be familiar with the basic facts of measure theory and functional analysis, including weak derivatives and Sobolev spaces. Prior work in partial differential equations is helpful but not required.