You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book gathers 30 papers presented at the 21st PCBBE, which was hosted by the University of Zielona Góra, Poland, and offered a valuable forum for exchanging ideas and presenting the latest developments in all areas of biomedical engineering. Biocybernetics and biomedical engineering are currently considered one of the most promising ways to improve health care and, consequently, the quality of life. Innovative technical solutions can better meet physicians’ needs and stimulate the development of medical diagnostics and therapy. We are currently witnessing a profound change in the role of medicine, which is becoming ubiquitous in everyday life thanks to technological advances. Further,...
Adopting a multidisciplinary approach with input from physicists, researchers and medical professionals, this is the first book to introduce many different technical approaches for the visualization of microcirculation, including laser Doppler and laser speckle, optical coherence tomography and photo-acoustic tomography. It covers everything from basic research to medical applications, providing the technical details while also outlining the respective strengths and weaknesses of each imaging technique. Edited by an international team of top experts, this is the ultimate handbook for every clinician and researcher relying on microcirculation imaging.
"3D bioprinting" refers to processes in which an additive manufacturing approach is used to create devices for medical applications. This volume considers exciting applications for 3D bioprinting, including its use in manufacturing artificial tissues, surgical models, and orthopedic implants. The book includes chapters from leaders in the field on 3D bioprinting of tissues and organs, biomedical applications of digital light processing, biomedical applications of nozzle-free pyro-electrohydrodynamic jet printing of buffer-free bioinks, additive manufacturing of surgical models, dental crowns, and orthopedic implants, 3D bioprinting of dry electrodes, and 3D bioprinting for regenerative medicine and disease modeling of the ocular surface. This is an accessible reference for students and researchers on current 3D bioprinting technology, providing helpful information on the important applications of this technology. It will be a useful resource to students, researchers, and practitioners in the rapidly growing global 3D bioprinting community.
Practical Biomedical Signal Analysis Using MATLAB presents a coherent treatment of various signal processing methods and applications. The book not only covers the current techniques of biomedical signal processing, but it also offers guidance on which methods are appropriate for a given task and different types of data.The first several chapters o
This book has been created for the 50th anniversary of the International Federation for Medical and Biological Enineering and Computing IFMBE. The IFMBE is primarily a professional organization of national and transnational societies representing interests in medical and biological engineering. In six parts, this book presents an overview on the federation, its activities and the characters who shaped IFMBE. In the last part, all member societies give a short presentation.
Compiled by 330 of the most widely respected names in the electro-optical sciences, the Encyclopedia is destined to serve as the premiere guide in the field with nearly 2000 figures, 560 photographs, 260 tables, and 3800 equations. From astronomy to x-ray optics, this reference contains more than 230 vivid entries examining the most intriguing technological advances and perspectives from distinguished professionals around the globe. The contributors have selected topics of utmost importance in areas including digital image enhancement, biological modeling, biomedical spectroscopy, and ocean optics, providing thorough coverage of recent applications in this continually expanding field.
This volume presents the 5th European Conference of the International Federation for Medical and Biological Engineering (EMBEC), held in Budapest, 14-18 September, 2011. The scientific discussion on the conference and in this conference proceedings include the following issues: - Signal & Image Processing - ICT - Clinical Engineering and Applications - Biomechanics and Fluid Biomechanics - Biomaterials and Tissue Repair - Innovations and Nanotechnology - Modeling and Simulation - Education and Professional
PRINT/ONLINE PRICING OPTIONS AVAILABLE UPON REQUEST ATe-reference@taylorandfrancis.com
Information Technology in Biomedicine is an interdisciplinary research area, that bridges the gap between tethodological achievements in engineering and clinical requirements in medical diagnosis and therapy. In this book, members of the academic society of technical and medical background present their research results and clinical implementation in order to satisfy the functional requirements of authorized physicians for the benefit of the patients. An extended area is covered by the articles. It includes biomedical signals, medical image processing, computer-aided diagnosis and surgery, biometrics, healthcare and telemedicine, biomechanics, biomaterials, bioinformatics. Section on bronchoscopy presents the basis as well as new research studies performed in this field. Papers present various theoretical approaches and new methodologies based on fuzzy sets, mathematical statistics, mathematical morphology, fractals, wavelets, syntactic methods, artificial neural networks, graphs and many others.
This book is an attempt to bridge the gap between the instrumental principles of multi-dimensional time-correlated single photon counting (TCSPC) and typical applications of the technique. Written by an originator of the technique and by sucessful users, it covers the basic principles of the technique, its interaction with optical imaging methods and its application to a wide range of experimental tasks in life sciences and clinical research. The book is recommended for all users of time-resolved detection techniques in biology, bio-chemistry, spectroscopy of live systems, live cell microscopy, clinical imaging, spectroscopy of single molecules, and other applications that require the detection of low-level light signals at single-photon sensitivity and picosecond time resolution.