You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This title is part of a two-volume set that constitute the refereed proceedings of the 10th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2007. Coverage in this second volume includes computer assisted intervention and robotics, visualization and interaction, neuroscience image computing, computational anatomy, innovative clinical and biological applications, general biological imaging computing, computational physiology.
The eight-volume set LNCS 12901, 12902, 12903, 12904, 12905, 12906, 12907, and 12908 constitutes the refereed proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021, held in Strasbourg, France, in September/October 2021.* The 531 revised full papers presented were carefully reviewed and selected from 1630 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: image segmentation Part II: machine learning - self-supervised learning; machine learning - semi-supervised learning; and machine learning - weakly supervised learning Part III: machine learning - advances in m...
Machine intelligence will eclipse human intelligence within the next few decades - extrapolating from Moore’s Law - and our world will enjoy limitless computational power and ubiquitous data networks. Today’s iPod® devices portend an era when biology and information technology will fuse to create a human experience radically different from our own. Already, our healthcare system now appears on the verge of crisis; accelerating change is part of the problem. Each technological upgrade demands an investment of education and money, and a costly infrastructure more quickly becomes obsolete. Practitioners can be overloaded with complexity: therapeutic options, outcomes data, procedural codin...
The book is designed for end users in the field of digital imaging, who wish to update their skills and understanding with the latest techniques in image analysis. The book emphasizes the conceptual framework of image analysis and the effective use of image processing tools. It uses applications in a variety of fields to demonstrate and consolidate both specific and general concepts, and to build intuition, insight and understanding. Although the chapters are essentially self-contained they reference other chapters to form an integrated whole. Each chapter employs a pedagogical approach to ensure conceptual learning before introducing specific techniques and “tricks of the trade”. The bo...
Intelligent robotics has become the focus of extensive research activity. This effort has been motivated by the wide variety of applications that can benefit from the developments. These applications often involve mobile robots, multiple robots working and interacting in the same work area, and operations in hazardous environments like nuclear power plants. Applications in the consumer and service sectors are also attracting interest. These applications have highlighted the importance of performance, safety, reliability, and fault tolerance. This volume is a selection of papers from a NATO Advanced Study Institute held in July 1989 with a focus on active perception and robot vision. The papers deal with such issues as motion understanding, 3-D data analysis, error minimization, object and environment modeling, object detection and recognition, parallel and real-time vision, and data fusion. The paradigm underlying the papers is that robotic systems require repeated and hierarchical application of the perception-planning-action cycle. The primary focus of the papers is the perception part of the cycle. Issues related to complete implementations are also discussed.
This book constitutes the refereed proceedings of the International Workshop on Augemented Environments for Computer-Assisted Interventions, held in conjunction with MICCAI 2012, in Nice, France in September 2012. The 16 revised full papers presented were carefully reviewed and selected from 22 submissions. The papers cover the topics of image registration and fusion, calibration, visualization and 3D perception, hardware and optical design, real-time implementation, as well as validation, clinical applications, and clinical evaluation.
In the early 1990s, a small group of individuals recognized how virtual reality (VR) could transform medicine by immersing physicians, students and patients in data more completely. Technical obstacles delayed progress but VR is now enjoying a renaissance, with breakthrough applications available for healthcare. This book presents papers from the Medicine Meets Virtual Reality 22 conference, held in Los Angeles, California, USA, in April 2016. Engineers, physicians, scientists, educators, students, industry, military, and futurists participated in its creative mix of unorthodox thinking and validated investigation. The topics covered include medical simulation and modeling, imaging and visualization, robotics, haptics, sensors, physical and mental rehabilitation tools, and more. Providing an overview of the state-of-the-art, this book will interest all those involved in medical VR and in innovative healthcare, generally.
Since the debut of the Medicine Meets Virtual Reality (MMVR) conference in 1992, MMVR has served as a forum for researchers harnessing IT advances for the benefit of patient diagnosis and care, medical education and procedural training. At MMVR, virtual reality becomes a theatre for medicine, where multiple senses are engaged - sight, sound and touch - and language and image fuse. Precisely because this theatre is unreal, it is a valuable tool: the risks of experimentation and failure are gone, while the opportunity to understand remains. Improvement of this tool, through steady technological progress, is the purpose of MMVR. This book presents papers delivered at the MMVR18 / NextMed confer...
This book presents the proceedings of the 21st NextMed/MMVR conference, held in Manhattan Beach, California, in February 2014. These papers describe recent developments in medical simulation, modeling, visualization, imaging, haptics, robotics, sensors, interfaces, and other IT-enabled technologies that benefit healthcare. The wide range of applications includes simulation for medical education and surgical training, information-guided therapies, mental and physical rehabilitation tools, and intelligence networks. Since 1992, Nextmed/MMVR has engaged the problem-solving abilities of scientists, engineers, clinicians, educators, the military, students, and healthcare futurists. Its multidisciplinary participation offers a fresh perspective on how to make patient care and medical education more precise and effective.