You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This multi-author reference work provides a unique introduction to the currently emerging, highly interdisciplinary field of those transport processes that cannot be described by using standard methods of statistical mechanics. It comprehensively summarizes topics ranging from mathematical foundations of anomalous dynamics to the most recent experiments in this field. In so doing, this monograph extracts and emphasizes common principles and methods from many different disciplines while providing up-to-date coverage of this new field of research, considering such diverse applications as plasma physics, glassy material, cell science, and socio-economic aspects. The book will be of interest to both theorists and experimentalists in nonlinear dynamics, statistical physics and stochastic processes. It also forms an ideal starting point for graduate students moving into this area. 18 chapters written by internationally recognized experts in this field provide in-depth introductions to fundamental aspects of anomalous transport.
The contributions to this volume cover a wide spectrum of recent developments in geophysical data inversion, including basic mathematics and general theory, numerical methods, as well as computer implementation of algorithms. Most of the papers are motivated by problems arising from geophysical research and applications both on a global scale and with respect to local geophysical surveys, underlining the increasing importance of geophysical exploration methods in various fields, such as structural geology, prospecting for mineral and energy resources, hydro geology, geotechnology, environmental protection and archaeology. The first section of the book deals with basic mathematics and general...
This book presents a collection of papers from the 10th ISAAC Congress 2015, held in Macau, China. The papers, prepared by respected international experts, address recent results in Mathematics, with a special focus on Analysis. By structuring the content according to the various mathematical topics, the volume offers specialists and non-specialists alike an excellent source of information on the state-of-the-art in Mathematical Analysis and its interdisciplinary applications.
As a result of researchers’ and scientists’ increasing interest in pure as well as applied mathematics in non-conventional models, particularly those using fractional calculus, Mittag-Leffler functions have recently caught the interest of the scientific community. Focusing on the theory of the Mittag-Leffler functions, the present volume offers a self-contained, comprehensive treatment, ranging from rather elementary matters to the latest research results. In addition to the theory the authors devote some sections of the work to the applications, treating various situations and processes in viscoelasticity, physics, hydrodynamics, diffusion and wave phenomena, as well as stochastics. In ...
The general theories contained in the text will give rise to new ideas and methods for the natural inversion formulas for general linear mappings in the framework of Hilbert spaces containing the natural solutions for Fredholm integral equations of the first kind.
The year 2000 is the centenary year of the publication of Bachelier's thesis which - together with Harry Markovitz Ph. D. dissertation on portfolio selection in 1952 and Fischer Black's and Myron Scholes' solution of an option pricing problem in 1973 - is considered as the starting point of modern finance as a mathematical discipline. On this remarkable anniversary the workshop on mathematical finance held at the University of Konstanz brought together practitioners, economists and mathematicians to discuss the state of the art. Apart from contributions to the known discrete, Brownian, and Lvy process models, first attempts to describe a market in a reasonable way by a fractional Brownian mo...
This textbook is intended as a core text for courses on aeroelasticity or aero-elasto-mechanics for senior undergraduate/graduate programs in aerospace and mechanical engineering. The book focuses on the basic understanding of the concepts required in learning about aeroelasticity, from observation, reasoning, and understanding fundamental physical principles. Fundamental and simple mathematics will be introduced to describe the features of aeroelastic problems, and to devise simple concurrent physical and mathematical modeling. It will be accompanied by the introduction and understandings of the mechanisms that create the interactions that generate the aeroelastic phenomena considered. The students will also be led to the relation between observed phenomena, assumptions that may have to be adopted to arrive at physical and mathematical modelling, interpreting and verifying the results, and the accompanied limitations, uncertainties and inaccuracies. The students will also be introduced to combine engineering problem solving attitude and determination with simple mechanics problem-solving skills that coexist harmoniously with a useful mechanical intuition.
This textbook presents a rigorous approach to multivariable calculus in the context of model building and optimization problems. This comprehensive overview is based on lectures given at five SERC Schools from 2008 to 2012 and covers a broad range of topics that will enable readers to understand and create deterministic and nondeterministic models. Researchers, advanced undergraduate, and graduate students in mathematics, statistics, physics, engineering, and biological sciences will find this book to be a valuable resource for finding appropriate models to describe real-life situations. The first chapter begins with an introduction to fractional calculus moving on to discuss fractional inte...
Queueing system is a delightful subject and is one of the major areas of research over years. The vast literature of queueing theory abounds in results of considerable theoretical elegance and significance as well as practical applications. The theory has to a large extent still remained behind the control of service process or arrival process.(i) Control of number of servers(ii) Control of service arrange(iii) Control of admission of customers(iv) Control of the queue discipline
Applications of Fractional Calculus to Modeling in Dynamics and Chaos aims to present novel developments, trends, and applications of fractional-order derivatives with power law and Mittag-Leffler kernel in the areas of chemistry, mechanics, chaos, epidemiology, fluid mechanics, modeling, and engineering. Non-singular and non-local fractional-order derivatives have been applied in different chapters to describe complex problems. The book offers theory and practical applications for the solutions of real-life problems and will be of interest to graduate-level students, educators, researchers, and scientists interested in mathematical modeling and its diverse applications. Features Discusses real-world problems, theory, and applications Covers new developments and advances in the various areas of nonlinear dynamics, signal processing, and chaos Suitable to teach master’s and/or PhD-level graduate students, and can be used by researchers, from any field of the social, health, and physical sciences