Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Introduction to Quantum Field Theory
  • Language: en
  • Pages: 464

Introduction to Quantum Field Theory

  • Type: Book
  • -
  • Published: 2000-11-17
  • -
  • Publisher: CRC Press

This text explains the features of quantum and statistical field systems that result from their field-theoretic nature and are common to different physical contexts. It supplies the practical tools for carrying out calculations and discusses the meaning of the results. The central concept is that of effective action (or free energy), and the main technical tool is the path integral, although other formalisms are also mentioned. The author emphasizes the simplest models first, then progresses to discussions of real systems before addressing more general and rigorous conclusions. The book is structured around carefully selected problems, which are solved in detail.

Function Spaces and Partial Differential Equations
  • Language: en
  • Pages: 523

Function Spaces and Partial Differential Equations

This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour. The strength of the book primarily lies in its clear and detailed explanations, scope and coverage, highlighting and presenting deep and profound inter-connections between different related and seemingly unrelated disciplines within classical and modern mathematics and above all the extensive collection of examples, worked-out and hinted exercises. There are well over 700 exercises of varying level leading the reader from the basics to the most advanced levels and frontiers of research. The book can be used either for independent study or for a year-long graduate level course. In fact it has its origin in a year-long graduate course taught by the author in Oxford in 2004-5 and various parts of it in other institutions later on. A good number of distinguished researchers and faculty in mathematics worldwide have started their research career from the course that formed the basis for this book.

Mathematical Physics: Classical Mechanics
  • Language: en
  • Pages: 683

Mathematical Physics: Classical Mechanics

  • Type: Book
  • -
  • Published: 2018-02-24
  • -
  • Publisher: Springer

As a limit theory of quantum mechanics, classical dynamics comprises a large variety of phenomena, from computable (integrable) to chaotic (mixing) behavior. This book presents the KAM (Kolmogorov-Arnold-Moser) theory and asymptotic completeness in classical scattering. Including a wealth of fascinating examples in physics, it offers not only an excellent selection of basic topics, but also an introduction to a number of current areas of research in the field of classical mechanics. Thanks to the didactic structure and concise appendices, the presentation is self-contained and requires only knowledge of the basic courses in mathematics. The book addresses the needs of graduate and senior undergraduate students in mathematics and physics, and of researchers interested in approaching classical mechanics from a modern point of view.

Geometry and Quantum Physics
  • Language: en
  • Pages: 413

Geometry and Quantum Physics

  • Type: Book
  • -
  • Published: 2008-01-11
  • -
  • Publisher: Springer

In modern mathematical physics, classical together with quantum, geometrical and functional analytic methods are used simultaneously. Non-commutative geometry in particular is becoming a useful tool in quantum field theories. This book, aimed at advanced students and researchers, provides an introduction to these ideas. Researchers will benefit particularly from the extensive survey articles on models relating to quantum gravity, string theory, and non-commutative geometry, as well as Connes' approach to the standard model.

Graph Theory As I Have Known It
  • Language: en
  • Pages: 254

Graph Theory As I Have Known It

This book provides a unique and unusual introduction to graph theory by one of the founding fathers, and will be of interest to all researchers in the subject. It is not intended as a comprehensive treatise, but rather as an account of those parts of the theory that have been of special interest to the author. Professor Tutte details his experience in the area, and provides a fascinating insight into how he was led to his theorems and the proofs he used. As well as being of historical interest it provides a useful starting point for research, with references to further suggested books as well as the original papers. The book starts by detailing the first problems worked on by Professor Tutte and his colleagues during his days as an undergraduate member of the Trinity Mathematical Society in Cambridge. It covers subjects such as comnbinatorial problems in chess, the algebraicization of graph theory, reconstruction of graphs, and the chromatic eigenvalues. In each case fascinating historical and biographical information about the author's research is provided.

One-dimensional Variational Problems
  • Language: en
  • Pages: 282

One-dimensional Variational Problems

One-dimensional variational problems have been somewhat neglected in the literature on calculus of variations, as authors usually treat minimal problems for multiple integrals which lead to partial differential equations and are considerably more difficult to handle. One-dimensional problems are connected with ordinary differential equations, and hence need many fewer technical prerequisites, but they exhibit the same kind of phenomena and surprises as variational problems for multiple integrals. This book provides an modern introduction to this subject, placing special emphasis on direct methods. It combines the efforts of a distinguished team of authors who are all renowned mathematicians ...

Dynamics of Viscous Compressible Fluids
  • Language: en
  • Pages: 228

Dynamics of Viscous Compressible Fluids

This text develops the ideas and concepts of the mathematical theory of viscous, compressible and heat conducting fluids. The material is by no means intended to be the last word on the subject but rather to indicate possible directions of future research.

Stochastic Processes, Physics and Geometry: New Interplays. II
  • Language: en
  • Pages: 650

Stochastic Processes, Physics and Geometry: New Interplays. II

This volume and Stochastic Processes, Physics and Geometry: New Interplays I present state-of-the-art research currently unfolding at the interface between mathematics and physics. Included are select articles from the international conference held in Leipzig (Germany) in honor of Sergio Albeverio's sixtieth birthday. The theme of the conference, "Infinite Dimensional (Stochastic) Analysis and Quantum Physics", was chosen to reflect Albeverio's wide-ranging scientific interests. The articles in these books reflect that broad range of interests and provide a detailed overview highlighting the deep interplay among stochastic processes, mathematical physics, and geometry. The contributions are ...

Analysis of Hamiltonian PDEs
  • Language: en
  • Pages: 228

Analysis of Hamiltonian PDEs

For the last 20-30 years, interest among mathematicians and physicists in infinite-dimensional Hamiltonian systems and Hamiltonian partial differential equations has been growing strongly, and many papers and a number of books have been written on integrable Hamiltonian PDEs. During the last decade though, the interest has shifted steadily towards non-integrable Hamiltonian PDEs. Here, not algebra but analysis and symplectic geometry are the appropriate analysing tools. The present book is the first one to use this approach to Hamiltonian PDEs and present a complete proof of the "KAM for PDEs" theorem. It will be an invaluable source of information for postgraduate mathematics and physics students and researchers.

The Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles
  • Language: en
  • Pages: 641

The Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles

This monograph examines the self-avoiding walk, a classical model in statistical mechanics, probability theory and mathematical physics, paying close attention to recent developments in the field, such as models in the hexagonal lattice and the Monte Carlo methods.