You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Although a useful and important tool, the potential of mathematical modelling for decision making is often neglected. Considered an art by many and weird science by some, modelling is not as widely appreciated in problem solving and decision making as perhaps it should be. And although many operations research, management science, and optimization
The use of evolutionary computation techniques has grown considerably over the past several years. Over this time, the use and applications of these techniques have been further enhanced resulting in a set of computational intelligence (also known as modern heuristics) tools that are particularly adept for solving complex optimization problems. Moreover, they are characteristically more robust than traditional methods based on formal logics or mathematical programming for many real world OR/MS problems. Hence, evolutionary computation techniques have dealt with complex optimization problems better than traditional optimization techniques although they can be applied to easy and simple proble...
"This book presents a variety of practical applications of neural networks in two important domains of economic activity: finance and manufacturing"--Provided by publisher.
Real life problems are known to be messy, dynamic and multi-objective, and involve high levels of uncertainty and constraints. Because traditional problem-solving methods are no longer capable of handling this level of complexity, heuristic search methods have attracted increasing attention in recent years for solving such problems. Inspired by nature, biology, statistical mechanics, physics and neuroscience, heuristics techniques are used to solve many problems where traditional methods have failed. Data Mining: A Heuristic Approach will be a repository for the applications of these techniques in the area of data mining.
This book consists of eight chapters, authored by distinguished researchers and practitioners, that highlight the state of the art and recent trends in addressing the project portfolio selection and scheduling problem (PPSSP) across a variety of domains, particularly defense, social programs, supply chains, and finance. Many organizations face the challenge of selecting and scheduling a subset of available projects subject to various resource and operational constraints. In the simplest scenario, the primary objective for an organization is to maximize the value added through funding and implementing a portfolio of projects, subject to the available budget. However, there are other major dif...
This book constitutes the proceedings of the Second Australasian Conference on Artificial Life and Computational Intelligence, ACALCI 2016, held in Canberra, ACT, Australia, in February 2016. The 30 full papers presented in this volume were carefully reviewed and selected from 41 submissions. They are organized in topical sections named: mathematical modeling and theory; learning and optimization; planning and scheduling; feature selection; and applications and games.
This book offers fourteen select papers presented at the recent Asia-Pacific Symposia on Intelligent and Evolutionary Systems. They illustrate the breadth of research in the field with applications ranging from business to medicine to network optimization.
As operations research (OR) applications continue to grow and flourish in a number of decision making fields, a reference that is comprehensive, concise, and easy to read is more than a nicety, it is a necessity. This book provides a single volume overview of OR applications in practice, making it the first resource a practitioner would reach for w
With the large amount of data stored by many organizations, capitalists have observed that this information is an intangible asset. Unfortunately, handling large databases is a very complex process and traditional learning techniques are expensive to use. Heuristic techniques provide much help in this arena, although little is known about heuristic techniques. Heuristic and Optimization for Knowledge Discovery addresses the foundation of this topic, as well as its practical uses, and aims to fill in the gap that exists in current literature.
Evolutionary computation techniques have attracted increasing att- tions in recent years for solving complex optimization problems. They are more robust than traditional methods based on formal logics or mathematical programming for many real world OR/MS problems. E- lutionary computation techniques can deal with complex optimization problems better than traditional optimization techniques. However, most papers on the application of evolutionary computation techniques to Operations Research /Management Science (OR/MS) problems have scattered around in different journals and conference proceedings. They also tend to focus on a very special and narrow topic. It is the right time that an archiv...