Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

SAS for Mixed Models
  • Language: en
  • Pages: 823

SAS for Mixed Models

Discover the power of mixed models with SAS. Mixed models—now the mainstream vehicle for analyzing most research data—are part of the core curriculum in most master’s degree programs in statistics and data science. In a single volume, this book updates both SAS® for Linear Models, Fourth Edition, and SAS® for Mixed Models, Second Edition, covering the latest capabilities for a variety of applications featuring the SAS GLIMMIX and MIXED procedures. Written for instructors of statistics, graduate students, scientists, statisticians in business or government, and other decision makers, SAS® for Mixed Models is the perfect entry for those with a background in two-way analysis of variance, regression, and intermediate-level use of SAS. This book expands coverage of mixed models for non-normal data and mixed-model-based precision and power analysis, including the following topics: Random-effect-only and random-coefficients models Multilevel, split-plot, multilocation, and repeated measures models Hierarchical models with nested random effects Analysis of covariance models Generalized linear mixed models This book is part of the SAS Press program.

JMP for Mixed Models
  • Language: en
  • Pages: 390

JMP for Mixed Models

Discover the power of mixed models with JMP and JMP Pro. Mixed models are now the mainstream method of choice for analyzing experimental data. Why? They are arguably the most straightforward and powerful way to handle correlated observations in designed experiments. Reaching well beyond standard linear models, mixed models enable you to make accurate and precise inferences about your experiments and to gain deeper understanding of sources of signal and noise in the system under study. Well-formed fixed and random effects generalize well and help you make the best data-driven decisions. JMP for Mixed Models brings together two of the strongest traditions in SAS software: mixed models and JMP....

Multiple Comparisons and Multiple Tests
  • Language: en

Multiple Comparisons and Multiple Tests

  • Type: Book
  • -
  • Published: 2000
  • -
  • Publisher: SAS Press

Does your work require multiple inferences? Are you a statistics teacher looking for a study guide to supplement the usually incomplete or outdated multiple comparisons/multiple testing material in your textbook? This workbook, the companion guide written specifically for use with Multiple Comparisons and Multiple Tests Using the SAS System, provides the supplement you need. Use this workbook and you will find problems and solutions that will enhance your understanding of the material within the main text. The workbook also provides updated information about multiple comparisons procedures, including enhancements for Release 8.1 of the SAS System. The chapters correlate with the chapters of the main text, and the format is clear and easy to use. This book and the companion text are quite useful as supplements for learning multiple comparisons procedures in standard linear models, multivariate analysis, categorical analysis, and regression and nonparametric statistics. Book jacket.

SAS for Mixed Models
  • Language: en
  • Pages: 814

SAS for Mixed Models

  • Type: Book
  • -
  • Published: 2006
  • -
  • Publisher: SAS Press

This indispensable guide to mixed models using SAS is completely revised and updated for SAS 9. Discover the latest capabilities available for a variety of applications featuring the MIXED, GLIMMIX, and NLMIXED procedures.

Batch Effects and Noise in Microarray Experiments
  • Language: en
  • Pages: 272

Batch Effects and Noise in Microarray Experiments

Batch Effects and Noise in Microarray Experiments: Sources and Solutions looks at the issue of technical noise and batch effects in microarray studies and illustrates how to alleviate such factors whilst interpreting the relevant biological information. Each chapter focuses on sources of noise and batch effects before starting an experiment, with examples of statistical methods for detecting, measuring, and managing batch effects within and across datasets provided online. Throughout the book the importance of standardization and the value of standard operating procedures in the development of genomics biomarkers is emphasized. Key Features: A thorough introduction to Batch Effects and Noise...

Handbook of Formulas and Software for Plant Geneticists and Breeders
  • Language: en
  • Pages: 343

Handbook of Formulas and Software for Plant Geneticists and Breeders

  • Type: Book
  • -
  • Published: 2024-11-15
  • -
  • Publisher: CRC Press

A simple solution to complicated statistical techniques and formulas! The Handbook of Formulas and Software for Plant Geneticists and Breeders is an up-to-date reference source that eliminates the need for hand calculations of complicated genetic formulas and equations. Contributions from members of the C1 Division of the Crop Science Society of America include computer program codes not found in Statistical Analysis System (SAS) and other commonly available statistical packages. The book provides an invaluable shortcut to sorting through piles of literature in search of programs that may have been published in abbreviated forms or never at all. The Handbook of Formulas and Software for Plan...

Generalized Linear and Nonlinear Models for Correlated Data
  • Language: en
  • Pages: 837

Generalized Linear and Nonlinear Models for Correlated Data

Edward Vonesh's Generalized Linear and Nonlinear Models for Correlated Data: Theory and Applications Using SAS is devoted to the analysis of correlated response data using SAS, with special emphasis on applications that require the use of generalized linear models or generalized nonlinear models. Written in a clear, easy-to-understand manner, it provides applied statisticians with the necessary theory, tools, and understanding to conduct complex analyses of continuous and/or discrete correlated data in a longitudinal or clustered data setting. Using numerous and complex examples, the book emphasizes real-world applications where the underlying model requires a nonlinear rather than linear formulation and compares and contrasts the various estimation techniques for both marginal and mixed-effects models. The SAS procedures MIXED, GENMOD, GLIMMIX, and NLMIXED as well as user-specified macros will be used extensively in these applications. In addition, the book provides detailed software code with most examples so that readers can begin applying the various techniques immediately. This book is part of the SAS Press program.

Bayesian Learning for Neural Networks
  • Language: en
  • Pages: 194

Bayesian Learning for Neural Networks

Artificial "neural networks" are widely used as flexible models for classification and regression applications, but questions remain about how the power of these models can be safely exploited when training data is limited. This book demonstrates how Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional training methods. Insight into the nature of these complex Bayesian models is provided by a theoretical investigation of the priors over functions that underlie them. A practical implementation of Bayesian neural network learning using Markov chain Monte Carlo methods is also described, and software for it is freely available over the Internet. Presupposing only basic knowledge of probability and statistics, this book should be of interest to researchers in statistics, engineering, and artificial intelligence.

Case Studies in Bayesian Statistics
  • Language: en
  • Pages: 441

Case Studies in Bayesian Statistics

The 5th Workshop on Case Studies in Bayesian Statistics was held at the Carnegie Mellon University campus on September 24-25, 1999. As in the past, the workshop featured both invited and contributed case studies. The former were presented and discussed in detail while the latter were presented in poster format. This volume contains the three invited case studies with the accompanying discussion as well as ten contributed pa pers selected by a refereeing process. The majority of case studies in the volume come from biomedical research. However, the reader will also find studies in education and public policy, environmental pollution, agricul ture, and robotics. INVITED PAPERS The three invite...

Topics in Optimal Design
  • Language: en
  • Pages: 173

Topics in Optimal Design

This book covers a wide range of topics in both discrete and continuous optimal designs. The topics discussed include designs for regression models, covariates models, models with trend effects, and models with competition effects. The prerequisites are a basic course in the design and analysis of experiments and some familiarity with the concepts of optimality criteria.