You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The fourth Structural Materials Technology NDT Conference was held in Atlantic City, New Jersey, with over sixty speakers presenting on a wide variety of topics. The goal of this conference was to inform engineers and researchers of the new nondestructive testing/nondestructive evaluation (NDT/NDE) technologies and techniques available for use in transportation construction. The use of alternative materials is challenging NDT/NDE professionals to develop new methods or modify existing techniques to address quality control, quality assurance, and long-term monitoring of structures built or strengthened with these materials. One such alternative is fiber-reinforced polymer (FRP) products. This conference included papers on this topic and a panel discussion that focused on the future of NDT/NDE technologies for structures built or rehabilitated with FRP composites. These proceedings contain the 62 papers that were presented at the conference, arranged according to session number. An author index is included.
Comprehension of complex systems comes from an understanding of not only the behavior of constituent elements but how they act together to form the behavior of the whole. However, given the multidisciplinary nature of complex systems, the scattering of information across different areas creates a chaotic situation for those trying to understand pos
Thank you for opening the second edition of this monograph, which is devoted to the study of a class of nonsmooth dynamical systems of the general form: ::i; = g(x,u) (0. 1) f(x, t) 2: 0 where x E JRn is the system's state vector, u E JRm is the vector of inputs, and the function f (-, . ) represents a unilateral constraint that is imposed on the state. More precisely, we shall restrict ourselves to a subclass of such systems, namely mechanical systems subject to unilateral constraints on the position, whose dynamical equations may be in a first instance written as: ii= g(q,q,u) (0. 2) f(q, t) 2: 0 where q E JRn is the vector of generalized coordinates of the system and u is an in put (or co...
There are various techniques to optimize either structural parameters, or structural controllers, but there are not many techniques that can simultaneously optimize the structural parameters and controller. The advantage of integrating the structural and controller optimization problems is that structure and controller interaction is taken into account in the design process and a more efficient overall design (lower control force/lighter weight) can be achieved, and also multidisciplinary design optimization can be performed. The down side is that the combined optimization problem is more difficult to formulate and solve, and computations are increased. This volume is a comprehensive treatment of dynamic analysis and control techniques in structural dynamic systems and the wide variety of issues and techniques that fall within this broad area, including the interactions between structural control systems and structural system parameters.
The official proceedings of the 10th world conference on earthquake engineering in Madrid. Coverage includes damage in recent earthquakes, seismic risk and hazard, site effects, structural analysis and design, seismic codes and standards, urban planning, and expert system application.
Automation and Computational Intelligence for Road Maintenance and Management A comprehensive computational intelligence toolbox for solving problems in infrastructure management In Automation and Computational Intelligence for Road Maintenance and Management, a team of accomplished researchers delivers an incisive reference that covers the latest developments in computer technology infrastructure management. The book contains an overview of foundational and emerging technologies and methods in both automation and computational intelligence, as well as detailed presentations of specific methodologies. The distinguished authors emphasize the most recent advances in the maintenance and managem...
This book, intended for people in engineering and fundamental sciences, presents an integrated mathematical methodology for advanced dynamics and control of structures and machines, ranging from the derivation of models up to the control synthesis problem. This point of view is particularly useful as the physical insight and the associated structural properties, related e.g. to the Lagrangian or Hamiltonian framework, can be advantageously utilized. To this end, up to date results in disciplines like continuum mechanics, analytical mechanics, thermodynamics and electrodynamics are presented exploiting the differential geometric properties, with the basic notions of this coordinate-free approach revisited in an own chapter. In order to illustrate the proposed methodologies, several industrial applications, e.g., the derivation of exact solutions for the deformation compensation by shaped actuation in elastic bodies, or the coordination of rigid and flexible joint robots, are discussed.
The topic of "structural control", which had already experienced some attention through publications, for example by Roorda, Yao, Yang, Abdel-Rohman, Leipholz etc. , mostly in journals of ASCE, was given its fIrst international forum at the University of Waterloo, Waterloo, Ontario, Canada, via an ruTMf - Symposium held in June, 1979. This very successful event gathered experts from a variety of technical and theoretical domains in which control plays tradi tionally an essential role and was meant to present the new idea of structural control to a broad audience, thus triggering interest and commitment as well as cross-fertilization. However, the peculiarities of structural control were alre...
The papers in this volume address advanced nonlinear topics in the general areas of vibration mitigation and system identification, such as, methods of analysis of strongly nonlinear dyanmical systems; techniques and methodologies for interpreting complex, multi-frequency transitions in damped nonlinear responses; new approaches for passive vibration mitigation based on nonlinear targeted energy transfer (TET) and the associated concept of nonlinear energy sink (NES); and an overview and assessment of current nonlinear system identification techniques.