You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The author's research on energy storage systems generally was confronted with five characteristics, i.e., complex, interacting, transporting, reacting, and heterogeneous systems. Hence, we refer to these kind of systems as Complex Heterogeneous Systems (CHeSs). The work considers interacting systems that exchange energy, mass, information, etc. in various ways. The elementary building blocks of CHeSs are based on fundamental thermodynamic, chemical, material, physical, and mathematical principles such as variational and graph-theoretic concepts. It investigates ways of defining complexity, computing percolation thresholds, making smart decisions also by learning from data/past experiences (e.g., providing a systematic approach towards battery management systems), and identifying battery life (e.g., by blow-up analysis of highly nonlinear concentrated solutions). Ultimately, the elaborated tools shall allow the reader to obtain a general understanding for simulating (also on quantum computers), controlling, and developing CHeSs as well as to pave the way for a general theory on CHeSs generalizing the view on complexity, measurement, estimation, and control.
This symposium brought together mechanicians, physicists and applied mathematicians to discuss the interdisciplinary topic of nonlinear wave motion, which displays effects that give rise to a multitude of unanswered questions. Nonlinear waves in fluids in particular display all the prominent nonlinear phenomena such as chaos, turbulence and pattern formation. Amongst the topics emphasized in these proceedings are: travelling fronts, solitary waves and periodic waves (dissipative and conservative); temporal and spatial asymptotics of perturbations of waves; bifurcations, stability and local dynamics of waves; interaction between different waves, and between waves and the mean flow; wave breaking, nonlinear effects on focussing and diffraction; modulation and envelope equations (their derivation and validity); and numerical and experimental results.
The European Conference on Complex Systems, held under the patronage of the Complex Systems Society, is an annual event that has become the leading European conference devoted to complexity science. ECCS'12, its ninth edition, took place in Brussels, during the first week of September 2012. It gathered about 650 scholars representing a wide range of topics relating to complex systems research, with emphasis on interdisciplinary approaches. More specifically, the following tracks were covered: 1. Foundations of Complex Systems 2. Complexity, Information and Computation 3. Prediction, Policy and Planning, Environment 4. Biological Complexity 5. Interacting Populations, Collective Behavior 6. Social Systems, Economics and Finance This book contains a selection of the contributions presented at the conference and its satellite meetings. Its contents reflect the extent, diversity and richness of research areas in the field, both fundamental and applied.
This book provides a detailed overview and comprehensive analysis of the main theoretical and experimental advances on free surface thin film and jet flows of soft matter. The book outlines the basic equations and boundary conditions and the derivation of low-dimensional models for the evolution of the free surface. At the experimental front, a variety of recent experimental developments is outlined and the link between theory and experiments is illustrated.
This book presents tutorial overviews for many applications of variational methods to molecular modeling. Topics discussed include the Gibbs-Bogoliubov-Feynman variational principle, square-gradient models, classical density functional theories, self-consistent-field theories, phase-field methods, Ginzburg-Landau and Helfrich-type phenomenological models, dynamical density functional theory, and variational Monte Carlo methods. Illustrative examples are given to facilitate understanding of the basic concepts and quantitative prediction of the properties and rich behavior of diverse many-body systems ranging from inhomogeneous fluids, electrolytes and ionic liquids in micropores, colloidal di...
Wave evolution on a falling film is a classical hydrodynamic instability whose rich wave dynamics have been carefully recorded in the last fifty years. Such waves are known to profoundly affect the mass and heat transfer of multi-phase industrial units.This book describes the collective effort of both authors and their students in constructing a comprehensive theory to describe the complex wave evolution from nearly harmonic waves at the inlet to complex spatio-temporal patterns involving solitary waves downstream. The mathematical theory represents a significant breakthrough from classical linear stability theories, which can only describe the inlet harmonic waves and also extends classical...
The revolution is well underway. Our understanding and utilization of microelectromechanical systems (MEMS) are growing at an explosive rate with a worldwide market approaching billions of dollars. In time, microdevices will fill the niches of our lives as pervasively as electronics do right now. But if these miniature devices are to fulfill their mammoth potential, today's engineers need a thorough grounding in the underlying physics, modeling techniques, fabrication methods, and materials of MEMS. The MEMS Handbook delivers all of this and more. Its team of authors-unsurpassed in their experience and standing in the scientific community- explore various aspects of MEMS: their design, fabrication, and applications as well as the physical modeling of their operations. Designed for maximum readability without compromising rigor, it provides a current and essential overview of this fledgling discipline.
This volume gathers selected contributions from the participants of the Banff International Research Station (BIRS) workshop Coupled Mathematical Models for Physical and Biological Nanoscale Systems and their Applications, who explore various aspects of the analysis, modeling and applications of nanoscale systems, with a particular focus on low dimensional nanostructures and coupled mathematical models for their description. Due to the vastness, novelty and complexity of the interfaces between mathematical modeling and nanoscience and nanotechnology, many important areas in these disciplines remain largely unexplored. In their efforts to move forward, multidisciplinary research communities h...
Hydrodynamic stability is of fundamental importance in the mechanics of fluids and is mainly concerned with the problem of the transition to turbulence. This book is devoted to publication of original research papers, research-expository and survey articles with an emphasis on unsolved problems and open questions in the mathematical modeling and computational aspects of hydrodynamic stability. Review chapters on the mathematical modeling and numerical simulation aspects of hydrodynamic stability, the physical background, and the limitations of the modeling and simulation procedures, due to particular mathematical or computational methods used, are included. This book will be appropriate for use in research and in research-related courses on the subject. It includes chapters on bifurcations in fluid systems, flow patterns, channel flows, non-parallel shear flows, thin-film flows, strong viscous shear flows, Gortler vortices, bifurcations in convection, wavy film flows and boundary layers.
This monograph, entirely devoted to “Convection in Fluids”, presents a unified rational approach of various convective phenomena in fluids (mainly considered as a thermally perfect gas or an expansible liquid), where the main driving mechanism is the buoyancy force (Archimedean thrust) or temperature-dependent surface tension in homogeneities (Marangoni effect). Also, the general mathematical formulation (for instance, in the Bénard problem - heated from below) and the effect of free surface deformation are taken into account. In the case of atmospheric thermal convection, the Coriolis force and stratification effects are also considered. This volume gives a rational and analytical anal...