You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An essential resource for learning about general relativity and much more, from four leading experts Important and useful to every student of relativity, this book is a unique collection of some 475 problems--with solutions--in the fields of special and general relativity, gravitation, relativistic astrophysics, and cosmology. The problems are expressed in broad physical terms to enhance their pertinence to readers with diverse backgrounds. In their solutions, the authors have attempted to convey a mode of approach to these kinds of problems, revealing procedures that can reduce the labor of calculations while avoiding the pitfall of too much or too powerful formalism. Although well suited for individual use, the volume may also be used with one of the modem textbooks in general relativity.
This self-contained textbook brings together many different branches of physics--e.g. nuclear physics, solid state physics, particle physics, hydrodynamics, relativity--to analyze compact objects. The latest astronomical data is assessed. Over 250 exercises.
A comprehensive summary of progress made during the past decade on the theory of black holes and relativistic stars, this collection includes discussion of structure and oscillations of relativistic stars, the use of gravitational radiation detectors, observational evidence for black holes, cosmic censorship, numerical work related to black hole collisions, the internal structure of black holes, black hole thermodynamics, information loss and other issues related to the quantum properties of black holes, and recent developments in the theory of black holes in the context of string theory. Volume contributors: Valeria Ferrari, John L. Friedman, James B. Hartle, Stephen W. Hawking, Gary T. Horowitz, Werner Israel, Roger Penrose, Martin J. Rees, Rafael D. Sorkin, Saul A. Teukolsky, Kip S. Thorne, and Robert M. Wald.
This self-contained textbook brings together many different branches of physics--e.g. nuclear physics, solid state physics, particle physics, hydrodynamics, relativity--to analyze compact objects. The latest astronomical data is assessed. Over 250 exercises.
The author found himself in places and times to closely observe significant events and noteworthy personalities in 20th century science. Variously, he interacted with such notables as Richard Feynman, S. Chandrasekhar, Edward Teller, Ya. B. Zel'dovich, John Wheeler, James Watson, Julian Schwinger, Fred Hoyle, Martin Rees, Stephen Hawking, Freeman Dyson, Ed Witten, and many others. His Ph.D. advisor, Kip Thorne, and his Ph.D. student, Adam Riess, each won Nobel Prizes-for discoveries that he helped them start. Later, he worked with (or for) not just scientists, but also technology capitalists and billionaires, admirals and generals, and political leaders including two U.S. presidents. His memoir is rich in stories about these people and events.
Supernovae, hypernovae and gamma-ray bursts are among the most energetic explosions in the universe. The light from these outbursts is, for a brief time, comparable to billions of stars and can outshine the host galaxy within which the explosions reside. Most of the heavy elements in the universe are formed within these energetic explosions. Surprisingly enough, the collapse of massive stars is the primary source of not just one, but all three of these explosions. As all of these explosions arise from stellar collapse, to understand one requires an understanding of the others. Stellar Collapse marks the first book to combine discussions of all three phenomena, focusing on the similarities and differences between them. Designed for graduate students and scientists newly entering this field, this book provides a review not only of these explosions, but the detailed physical models used to explain them from the numerical techniques used to model neutrino transport and gamma-ray transport to the detailed nuclear physics behind the evolution of the collapse to the observations that have led to these three classes of explosions.
How does a computer scientist understand infinity? What can probability theory teach us about free will? Can mathematical notions be used to enhance one's personal understanding of the Bible? Perhaps no one is more qualified to address these questions than Donald E. Knuth, whose massive contributions to computing have led others to nickname him "The Father of Computer Science"—and whose religious faith led him to understand a fascinating analysis of the Bible called the 3:16 project. In this series of six spirited, informal lectures, Knuth explores the relationships between his vocation and his faith, revealing the unique perspective that his work with computing has lent to his understandi...
Now the acclaimed Second Edition of Numerical Recipes is available in the C++ object-oriented programming language. Including and updating the full mathematical and explanatory contents of Numerical Recipes in C, this new version incorporates completely new C++ versions of the more than 300 Numerical Recipes routines that are widely recognized as the most accessible and practical basis for scientific computing. The product of a unique collaboration among four leading scientists in academic research and industry, Numerical Recipes is a complete text and reference book on scientific computing. In a self-contained manner it proceeds from mathematical and theoretical considerations to actual pra...