You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This monograph introduces a new mathematical model in population dynamics that describes two species sharing the same environmental resources in a situation of open hostility. Its main feature is the expansion of the family of Lotka-Volterra systems by introducing a new term that defines aggression. Because the model is flexible, it can be applied to various scenarios in the context of human populations, such as strategy games, competition in the marketplace, and civil wars. Drawing from a variety of methodologies within dynamical systems, ODEs, and mathematical biology, the authors' approach focuses on the dynamical properties of the system. This is accomplished by detecting and describing all possible equilibria, and analyzing the strategies that may lead to the victory of the aggressive population. Techniques typical of two-dimensional dynamical systems are used, such as asymptotic behaviors regulated by the Poincaré-Bendixson Theorem. A New Lotka-Volterra Model of Competition With Strategic Aggression will appeal to researchers and students studying population dynamics and dynamical systems, particularly those interested in the cross section between mathematics and ecology.
These lecture notes are devoted to the analysis of a nonlocal equation in the whole of Euclidean space. In studying this equation, all the necessary material is introduced in the most self-contained way possible, giving precise references to the literature when necessary. The results presented are original, but no particular prerequisite or knowledge of the previous literature is needed to read this text. The work is accessible to a wide audience and can also serve as introductory research material on the topic of nonlocal nonlinear equations.
This volume collects contributions from the speakers at an INdAM Intensive period held at the University of Bari in 2017. The contributions cover several aspects of partial differential equations whose development in recent years has experienced major breakthroughs in terms of both theory and applications. The topics covered include nonlocal equations, elliptic equations and systems, fully nonlinear equations, nonlinear parabolic equations, overdetermined boundary value problems, maximum principles, geometric analysis, control theory, mean field games, and bio-mathematics. The authors are trailblazers in these topics and present their work in a way that is exhaustive and clearly accessible to PhD students and early career researcher. As such, the book offers an excellent introduction to a variety of fundamental topics of contemporary investigation and inspires novel and high-quality research.
This is a textbook that covers several selected topics in the theory of elliptic partial differential equations which can be used in an advanced undergraduate or graduate course.The book considers many important issues such as existence, regularity, qualitative properties, and all the classical topics useful in the wide world of partial differential equations. It also includes applications with interesting examples.The structure of the book is flexible enough to allow different chapters to be taught independently.The book is friendly, welcoming, and written for a newcomer to the subject.It is essentially self-contained, making it easy to read, and all the concepts are fully explained from scratch, combining intuition and rigor, and therefore it can also be read independently by students, with limited or no supervision.
This volume contains the proceedings of the virtual conference on Geometric and Functional Inequalities and Recent Topics in Nonlinear PDEs, held from February 28–March 1, 2021, and hosted by Purdue University, West Lafayette, IN. The mathematical content of this volume is at the intersection of viscosity theory, Fourier analysis, mass transport theory, fractional elliptic theory, and geometric analysis. The reader will encounter, among others, the following topics: the principal-agent problem; Maxwell's equations; Liouville-type theorems for fully nonlinear elliptic equations; a doubly monotone flow for constant width bodies; and the edge dislocations problem for crystals that describes the equilibrium configurations by a nonlocal fractional Laplacian equation.
This volume comprises selected, revised papers from the Joint CIM-WIAS Workshop, TAAO 2017, held in Lisbon, Portugal, in December 2017. The workshop brought together experts from research groups at the Weierstrass Institute in Berlin and mathematics centres in Portugal to present and discuss current scientific topics and to promote existing and future collaborations. The papers include the following topics: PDEs with applications to material sciences, thermodynamics and laser dynamics, scientific computing, nonlinear optimization and stochastic analysis.
MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the eight programs held at MATRIX in 2018: - Non-Equilibrium Systems and Special Functions - Algebraic Geometry, Approximation and Optimisation - On the Frontiers of High Dimensional Computation - Month of Mathematical Biology - Dynamics, Foliations, and Geometry In Dimension 3 - Recent Trends on Nonlinear PDEs of Elliptic and Parabolic Type - Functional Data Analysis and Beyond - Geometric and Categorical Representation Theory The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the eight programs held at MATRIX in its second year, 2017: - Hypergeometric Motives and Calabi–Yau Differential Equations - Computational Inverse Problems - Integrability in Low-Dimensional Quantum Systems - Elliptic Partial Differential Equations of Second Order: Celebrating 40 Years of Gilbarg and Trudinger’s Book - Combinatorics, Statistical Mechanics, and Conformal Field Theory - Mathematics of Risk - Tutte Centenary Retreat - Geometric R-Matrices: from Geometry to Probability The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.
Articles in this volume are based on presentations given at the IV Meeting of Mexican Mathematicians Abroad (IV Reunión de Matemáticos Mexicanos en el Mundo), held from June 10–15, 2018, at Casa Matemática Oaxaca (CMO), Mexico. This meeting was the fourth in a series of ongoing biannual meetings bringing together Mexican mathematicians working abroad with their peers in Mexico. This book features surveys and research articles from five broad research areas: algebra, analysis, combinatorics, geometry, and topology. Their topics range from general relativity and mathematical physics to interactions between logic and ergodic theory. Several articles provide a panoramic view of the fields and problems on which the authors are currently working on, showcasing diverse research lines complementary to those currently pursued in Mexico. The research-oriented manuscripts provide either alternative approaches to well-known problems or new advances in active research fields.