You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray’s famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray’s death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. T...
Introduction to Abelian Model Structures and Gorenstein Homological Dimensions provides a starting point to study the relationship between homological and homotopical algebra, a very active branch of mathematics. The book shows how to obtain new model structures in homological algebra by constructing a pair of compatible complete cotorsion pairs related to a specific homological dimension and then applying the Hovey Correspondence to generate an abelian model structure. The first part of the book introduces the definitions and notations of the universal constructions most often used in category theory. The next part presents a proof of the Eklof and Trlifaj theorem in Grothedieck categories ...
This volume contains the proceedings of the AMS Special Session on Differential Geometry and Global Analysis, Honoring the Memory of Tadashi Nagano (1930–2017), held January 16, 2020, in Denver, Colorado. Tadashi Nagano was one of the great Japanese differential geometers, whose fundamental and seminal work still attracts much interest today. This volume is inspired by his work and his legacy and, while recalling historical results, presents recent developments in the geometry of symmetric spaces as well as generalizations of symmetric spaces; minimal surfaces and minimal submanifolds; totally geodesic submanifolds and their classification; Riemannian, affine, projective, and conformal connections; the $(M_{+}, M_{-})$ method and its applications; and maximal antipodal subsets. Additionally, the volume features recent achievements related to biharmonic and biconservative hypersurfaces in space forms, the geometry of Laplace operator on Riemannian manifolds, and Chen-Ricci inequalities for Riemannian maps, among other topics that could attract the interest of any scholar working in differential geometry and global analysis on manifolds.
This proceedings consists of papers presented at the international meeting of Differential Geometry and Computer Vision held in Norway and of international meetings on Pure and Applied Differential Geometry held in Belgium. This volume is dedicated to Prof Dr Tom Willmore for his contribution to the development of the domain of differential geometry. Furthermore, it contains a survey on recent developments on affine differential geometry, including a list of publications and a problem list.
Alfred Gray's work covered a great part of differential geometry. In September 2000, a remarkable International Congress on Differential Geometry was held in his memory in Bilbao, Spain. Mathematicians from all over the world, representing 24 countries, attended the event. This volume includes major contributions by well known mathematicians (T. Banchoff, S. Donaldson, H. Ferguson, M. Gromov, N. Hitchin, A. Huckleberry, O. Kowalski, V. Miquel, E. Musso, A. Ros, S. Salamon, L. Vanhecke, P. Wellin and J.A. Wolf), the interesting discussion from the round table moderated by J.-P. Bourguignon, and a carefully selected and refereed selection of the Short Communications presented at the Congress. This book represents the state of the art in modern differential geometry, with some general expositions of some of the more active areas: special Riemannian manifolds, Lie groups and homogeneous spaces, complex structures, symplectic manifolds, geometry of geodesic spheres and tubes and related problems, geometry of surfaces, and computer graphics in differential geometry.
This book, one of the first on G2 manifolds in decades, collects introductory lectures and survey articles largely based on talks given at a workshop held at the Fields Institute in August 2017, as part of the major thematic program on geometric analysis. It provides an accessible introduction to various aspects of the geometry of G2 manifolds, including the construction of examples, as well as the intimate relations with calibrated geometry, Yang-Mills gauge theory, and geometric flows. It also features the inclusion of a survey on the new topological and analytic invariants of G2 manifolds that have been recently discovered. The first half of the book, consisting of several introductory lectures, is aimed at experienced graduate students or early career researchers in geometry and topology who wish to familiarize themselves with this burgeoning field. The second half, consisting of numerous survey articles, is intended to be useful to both beginners and experts in the field.
None
This volume contains the proceedings of the AMS Special Session on Geometry of Submanifolds, held from October 25–26, 2014, at San Francisco State University, San Francisco, CA, and the AMS Special Session on Recent Advances in the Geometry of Submanifolds: Dedicated to the Memory of Franki Dillen (1963–2013), held from March 14–15, 2015, at Michigan State University, East Lansing, Ml. The focus of the volume is on recent studies of submanifolds of Riemannian, semi-Riemannian, Kaehlerian and contact manifolds. Some of these use techniques in classical differential geometry, while others use methods from ordinary differential equations, geometric analysis, or geometric PDEs. By brainstorming on the fundamental problems and exploring a large variety of questions studied in submanifold geometry, the editors hope to provide mathematicians with a working tool, not just a collection of individual contributions. This volume is dedicated to the memory of Franki Dillen, whose work in submanifold theory attracted the attention of and inspired many geometers.
This book covers finite element methods for several typical eigenvalues that arise from science and engineering. Both theory and implementation are covered in depth at the graduate level. The background for typical eigenvalue problems is included along with functional analysis tools, finite element discretization methods, convergence analysis, techniques for matrix evaluation problems, and computer implementation. The book also presents new methods, such as the discontinuous Galerkin method, and new problems, such as the transmission eigenvalue problem.
The scientific personalities of Luigi Cremona, Eugenio Beltrami, Salvatore Pincherle, Federigo Enriques, Beppo Levi, Giuseppe Vitali, Beniamino Segre and of several other mathematicians who worked in Bologna in the century 1861–1960 are examined by different authors, in some cases providing different view points. Most contributions in the volume are historical; they are reproductions of original documents or studies on an original work and its impact on later research. The achievements of other mathematicians are investigated for their present-day importance.