You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The story of New York's '21' Club is the story of American glamour in the twentieth century. In his star-studded memoir, saloonkeeper Peter Kriendler—younger brother of Jack Kriendler, cofounder of '21'—paints a spellbinding portrait of the club through its early years, its birth as a Greenwich Village speakeasy, its move to midtown during Prohibition, the tough days of the Great Depression, the dazzling Camelot nights, and the swinging go-go years as it became America's most legendary restaurant and a second home to the most powerful people in business, politics, and entertainment.
This book describes methods to address wearout/aging degradations in electronic chips and systems, caused by several physical mechanisms at the device level. The authors introduce a novel technique called accelerated active self-healing, which fixes wearout issues by enabling accelerated recovery. Coverage includes recovery theory, experimental results, implementations and applications, across multiple nodes ranging from planar, FD-SOI to FinFET, based on both foundry provided models and predictive models. Presents novel techniques, tested with experiments on real hardware; Discusses circuit and system level wearout recovery implementations, many of these designs are portable and friendly to the standard design flow; Provides circuit-architecture-system infrastructures that enable the accelerated self-healing for future resilient systems; Discusses wearout issues at both transistor and interconnect level, providing solutions that apply to both; Includes coverage of resilient aspects of emerging applications such as IoT.
Peterson's Graduate Programs in Engineering & Applied Sciences contains a wealth of information on colleges and universities that offer graduate degrees in the fields of Aerospace/Aeronautical Engineering; Agricultural Engineering & Bioengineering; Architectural Engineering, Biomedical Engineering & Biotechnology; Chemical Engineering; Civil & Environmental Engineering; Computer Science & Information Technology; Electrical & Computer Engineering; Energy & Power engineering; Engineering Design; Engineering Physics; Geological, Mineral/Mining, and Petroleum Engineering; Industrial Engineering; Management of Engineering & Technology; Materials Sciences & Engineering; Mechanical Engineering & Me...
None
None
Model order reduction (MOR) techniques reduce the complexity of VLSI designs, paving the way to higher operating speeds and smaller feature sizes. This book presents a systematic introduction to, and treatment of, the key MOR methods employed in general linear circuits, using real-world examples to illustrate the advantages and disadvantages of each algorithm. Following a review of traditional projection-based techniques, coverage progresses to more advanced MOR methods for VLSI design, including HMOR, passive truncated balanced realization (TBR) methods, efficient inductance modeling via the VPEC model, and structure-preserving MOR techniques. Where possible, numerical methods are approached from the CAD engineer's perspective, avoiding complex mathematics and allowing the reader to take on real design problems and develop more effective tools. With practical examples and over 100 illustrations, this book is suitable for researchers and graduate students of electrical and computer engineering, as well as practitioners working in the VLSI design industry.