You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area. Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weigh...
Alexandrov spaces are defined via axioms similar to those of the Euclid axioms but where certain equalities are replaced with inequalities. Depending on the signs of the inequalities, we obtain Alexandrov spaces with curvature bounded above (CBA) and curvature bounded below (CBB). Even though the definitions of the two classes of spaces are similar, their properties and known applications are quite different. The goal of this book is to give a comprehensive exposition of the structure theory of Alexandrov spaces with curvature bounded above and below. It includes all the basic material as well as selected topics inspired by considering Alexandrov spaces with CBA and with CBB simultaneously. The book also includes an extensive problem list with solutions indicated for every problem.
Lecture notes and research papers on optimal transportation, its applications, and interactions with other areas of mathematics.
In this paper the author studies elliptic PDEs on compact Gromov-Hausdorff limit spaces of Riemannian manifolds with lower Ricci curvature bounds. In particular the author establishes continuities of geometric quantities, which include solutions of Poisson's equations, eigenvalues of Schrödinger operators, generalized Yamabe constants and eigenvalues of the Hodge Laplacian, with respect to the Gromov-Hausdorff topology. The author applies these to the study of second-order differential calculus on such limit spaces.
We are defining and studying an algebro-geometric analogue of Donaldson invariants by using moduli spaces of semistable sheaves with arbitrary ranks on a polarized projective surface.We are interested in relations among the invariants, which are natural generalizations of the "wall-crossing formula" and the "Witten conjecture" for classical Donaldson invariants. Our goal is to obtain a weaker version of these relations, by systematically using the intrinsic smoothness of moduli spaces. According to the recent excellent work of L. Goettsche, H. Nakajima and K. Yoshioka, the wall-crossing formula for Donaldson invariants of projective surfaces can be deduced from such a weaker result in the rank two case!
The theory of optimal transportation has its origins in the eighteenth century when the problem of transporting resources at a minimal cost was first formalised. Through subsequent developments, particularly in recent decades, it has become a powerful modern theory. This book contains the proceedings of the summer school 'Optimal Transportation: Theory and Applications' held at the Fourier Institute in Grenoble. The event brought together mathematicians from pure and applied mathematics, astrophysics, economics and computer science. Part I of this book is devoted to introductory lecture notes accessible to graduate students, while Part II contains research papers. Together, they represent a valuable resource on both fundamental and advanced aspects of optimal transportation, its applications, and its interactions with analysis, geometry, PDE and probability, urban planning and economics. Topics covered include Ricci flow, the Euler equations, functional inequalities, curvature-dimension conditions, and traffic congestion.