You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Under the widely applied rules of the OECD Transfer Pricing Guidelines, allocation of the returns from the exploitation of intellectual property should be shared among all entities that contribute towards the profit-generating value of an intangible. This important book, in its detailed treatment of compliance with this principle – known as DEMPE (development, enhancement, maintenance, protection and exploitation) – describes exactly how both taxpayers and tax authorities can achieve an accurate assessment of transactions in order to arrive at an appropriate transfer pricing outcome. Analysing the legal, economic, and business management aspects of multinational enterprises activities, t...
This book presents state-of-the-art coverage of synthesis of advanced functional materials. Unconventional synthetic routes play an important role in the synthesis of advanced materials as many new materials are metastable and cannot be synthesized by conventional methods. This book presents various synthesis methods such as conventional solid-state method, combustion method, a range of soft chemical methods, template synthesis, molecular precursor method, microwave synthesis, sono-chemical method and high-pressure synthesis. It provides a comprehensive overview of synthesis methods and covers a variety of materials, including ceramics, films, glass, carbon-based, and metallic materials. Many techniques for processing and surface functionalization are also discussed. Several engineering aspects of materials synthesis are also included. The contents of this book are useful for researchers and professionals working in the areas of materials and chemistry.
ZnO has been the central theme of research in the past decade due to its various applications in band gap engineering, and textile and biomedical industries. In nanostructured form, it offers ample opportunities to realize tunable optical and optoelectronic properties and it was also termed as a potential material to realize room temperature ferromagnetism. This book presents 17 high-quality contributory chapters on ZnO related systems written by experts in this field. These chapters will help researchers to understand and explore the varied physical properties to envisage device applications of ZnO in thin film, heterostructure and nanostructure forms.
The book presents new research on the synthesis and characterization of various oxide based dilute magnetic spintronics materials (ODMS). The characterization techniques included powder X-ray diffraction, scanning electron microscopy, vibrating sample magnetometry and UV visible spectrometry. The morphological, magnetic and optical properties are reported. Electron density distribution studies are presented in the form of three, two and one dimensional electron density maps. Keywords: Spintronics Materials, Zn1-xTixO, Zn1-xFexO, Zn1-xVxO, Zn1-xNix/2Vx/2O, Synthesis, X-ray Diffraction. Rietveld Analysis, Surface Morphological Properties, Optical Properties, Magnetic Properties, Charge Density Analysis, Electron Density Distribution.
This interdisciplinary approach to the topic brings together reviews of the physics, chemistry, fabrication and application of magnetic nanoparticles and nanostructures within a single cover. With its discussion of the basics as well as the most recent developments, and featuring many examples of practical applications, the result is both a clear and concise introduction to the topic for beginners and a guide to relevant comprehensive physical phenomena and essential technological applications for experienced researchers.
This book is devoted to a wide range of problems concerning applications of nanomaterials and nanodevices as effective solutions to modern ecological problems. Leading experts in nanoscience and nanotechnology present the key theoretical, experimental and implementation issues related to the creation and utilization of novel nanoscale devices to help ensure ecological security. The authors discuss appropriate nanotechnologies for minimizing various types of risk: to human life, technogenic risk, or indeed terrorist threats. Particular emphasis is placed on defining and studying the required materials properties, and – in the field – on nanoscale devices for sensors and monitoring.
Disordered nature of structural arrangement in amorphous and nanocrystalline alloys gives rise to advantageous soft magnetic properties in particular from a practical application viewpoint [1]. Especially nanocrystalline alloys attract a lot of scienti?c interest because, contrary to their amorphous counterparts, their magnetic parameters do not substantially deteriorate at elevated temperatures during the process of their practical exploitation. To bene?t from their unique magnetic pr- erties, the mechanism of crystallization should be known. Here, we present the study of structural transformation of NANOPERM-type alloys by the help of Mössbauer spectrometry, conventional X-ray diffraction...
This book provides an overview of the applications of ion beam techniques in oxide materials. Oxide materials exhibit defect-induced physical properties relevant to applications in sensing, optoelectronics and spintronics. Defects in these oxide materials also lead to magnetism in non-magnetic materials or to a change of magnetic ordering in magnetic materials. Thus, an understanding of defects is of immense importance. To date, ion beam tools are considered the most effective techniques for producing controlled defects in these oxides. This book will detail the ion beam tools utilized for creating defects in oxides.
The subject matter of this book is the application of EMR/ESR/EPR spectroscopy for characterization of nanomaterials. Initial chapters deal with nanomaterials and their classification. Characterization of metallic nanoparticles, metal oxide nanoparticles and rare earth impurity doped nanoparticles from the (ESR) spectrum parameters are covered in the chapters that follow. A special feature of the book is EMR/ESR/EPR spectroscopic characterization of nanoparticles which are important due to their bactericidal and anticancerous properties. Strength of continuous wave (CW) is explained with the help of suitable examples. The book focuses on applications and data interpretation avoiding extensive use of mathematics so that it also caters to the need of young scientists in the life science disciplines. The book includes a comparison with other spectroscopic characterization methods so as to give an integrated approach to the reader. It will prove useful to biomedical scientists and engineers, chemists, and materials engineers in student, researcher, and practitioner positions.
The era of nanoscience and its technology has become increasingly important in last two decades and this encompasses a vast range of unimaginable applications for forthcoming decades. Investigators are engaged in the manipulation of materials in the nano scale for studying their properties with making the desirable devices. The range between 1-100 nm (nm = nanometer) is generally considered as a nano scale and this scale is basically useful for measurement of the dimensions (length or width or area or height) of particles or constituents or atoms or molecules, etc. At this scale, everything, regardless of what it is, has different properties to that of their bulk counterparts and these make "nano" so fascinating!