You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book reports on developments in Proximal Soil Sensing (PSS) and high resolution digital soil mapping. PSS has become a multidisciplinary area of study that aims to develop field-based techniques for collecting information on the soil from close by, or within, the soil. Amongst others, PSS involves the use of optical, geophysical, electrochemical, mathematical and statistical methods. This volume, suitable for undergraduate course material and postgraduate research, brings together ideas and examples from those developing and using proximal sensors and high resolution digital soil maps for applications such as precision agriculture, soil contamination, archaeology, peri-urban design and ...
Introducing the physical basis, mathematical implementation, and geologic expression of modern volumetric attributes including coherence, dip/azimuth, curvature, amplitude gradients, seismic textures, and spectral decomposition, the authors demonstrate the importance of effective colour display and sensitivity to seismic acquisition and processing.
Expanding the author's original work on processing to include inversion and interpretation, and including developments in all aspects of conventional processing, this two-volume set is a comprehensive and complete coverage of the modern trends in the seismic industry - from time to depth, from 3D to 4D, from 4D to 4C, and from isotropy to anisotropy.
Part 1, "fundamentals", includes magnetic and electrical methods, subsurface geophysics, near-surface seismology, electromagnetic induction, and ground-penetrating radar. Part 2, "applications", includes determination of physical properties, multimethod surveys and integrated interpretations, and model-based survey planning, execution, and interpretation.
This new edition of the well-established Kearey and Brooks text is fully updated to reflect the important developments in geophysical methods since the production of the previous edition. The broad scope of previous editions is maintained, with even greater clarity of explanations from the revised text and extensively revised figures. Each of the major geophysical methods is treated systematically developing the theory behind the method and detailing the instrumentation, field data acquisition techniques, data processing and interpretation methods. The practical application of each method to such diverse exploration applications as petroleum, groundwater, engineering, environmental and forensic is shown by case histories. The mathematics required in order to understand the text is purposely kept to a minimum, so the book is suitable for courses taken in geophysics by all undergraduate students. It will also be of use to postgraduate students who might wish to include geophysics in their studies and to all professional geologists who wish to discover the breadth of the subject in connection with their own work.
For a thorough comprehension of the field of geophysics, we need to understand its origins. Basic Geophysics by Enders Robinson and Dean Clark takes us on a journey that demonstrates how the achievements of our predecessors have paved the way for our modern science. From the ancient Greeks through the Enlightenment to the greats of the contemporary age, the reasoning behind basic principles is explored and clarified. With that foundation, several advanced topics are examined, including: the 3D wave equation; ray tracing and seismic modeling; reflection, refraction, and diffraction; and WKBJ migration. The successful integration of the historical narrative alongside practical analysis of relevant principles makes this book an excellent resource for both novices and professionals, and all readers will gain insight and appreciation for the seismic theory that underlies modern exploration seismology.
Time-lapse (4D) seismic technology is a key enabler for improved hydrocarbon recovery and more cost-effective field operations. This book shows how 4D data are used for reservoir surveillance, add value to reservoir management, and provide valuable insight on dynamic reservoir properties such as fluid saturation, pressure, and temperature.
This volume contains applied papers and case histories that do not rely heavily on mathematical presentations. Descriptions of various techniques applied to actual fields are presented.