You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Progress in mathematics frequently occurs first by studying particular examples and then by generalizing the patterns that have been observed into far-reaching theorems. Similarly, in teaching mathematics one often employs examples to motivate a general principle or to illustrate its use. This volume uses the same idea in the context of learning how to teach: by analyzing particular teaching situations, one can develop broadly applicable teaching skills useful for the professional mathematician. These teaching situations are the case studies of the title. Just as a good mathematician seeks both to understand the details of a particular problem and to put it in a broader context, the examples presented here are chosen to offer a serious set of detailed teaching issues and to afford analysis from a broad perspective. Each case raises a variety of pedagogical and communication issues that may be explored either individually or in a group facilitated by a faculty member. The methodology of case studies is widely used in areas such as business and law. The consideration of the mathematics cases presented here should help readers to develop teaching skills for their own classrooms.
Eisenstein series are an essential ingredient in the spectral theory of automorphic forms and an important tool in the theory of L-functions. They have also been exploited extensively by number theorists for many arithmetic purposes. Bringing together contributions from areas which do not usually interact with each other, this volume introduces diverse users of Eisenstein series to a variety of important applications. With this juxtaposition of perspectives, the reader obtains deeper insights into the arithmetic of Eisenstein series. The central theme of the exposition focuses on the common structural properties of Eisenstein series occurring in many related applications.
This volume contains proceedings of two conferences held in Toronto (Canada) and Kozhikode (India) in 2016 in honor of the 60th birthday of Professor Kumar Murty. The meetings were focused on several aspects of number theory: The theory of automorphic forms and their associated L-functions Arithmetic geometry, with special emphasis on algebraic cycles, Shimura varieties, and explicit methods in the theory of abelian varieties The emerging applications of number theory in information technology Kumar Murty has been a substantial influence in these topics, and the two conferences were aimed at honoring his many contributions to number theory, arithmetic geometry, and information technology.
Herve Jacquet is one of the founders of the modern theory of automorphic representations and their associated $L$-functions. This volume represents a selection of his most influential papers not already available in book form. The volume contains papers on the $L$-function attached to a pair of representations of the general linear group. Thus, it completes Jacquet's papers on the subject (joint with Shalika and Piatetski-Shapiro) that can be found in the volume of selected works of Piatetski-Shapiro. In particular, two often quoted papers of Jacquet and Shalika on the classification of automorphic representations and a historically important paper of Gelbart and Jacquet on the functorial transfer from $GL(2)$ to $GL(3)$ are included. Another series of papers pertains to the relative trace formula introduced by Jacquet. This is a variant of the standard trace formula which is used to study the period integrals of automorphic forms. Nearly complete results are obtained for the period of an automorphic form over a unitary group.
Begins with the bosonic construction of four level -1/2 irreducible representations of the symplectic affine Kac-Moody Lie algebra Cl. The direct sum of two of these is given the structure of a vertex operator algebra (VOA), and the direct sum of the other two is given the structure of a twisted VOA-module. The dissertation includes the bosonic analog of the fermionic construction of a vertex operator superalgebra from the four level 1 irreducible modules of type Dl. No index. Annotation copyrighted by Book News, Inc., Portland, OR
"We prove that any variety of relation algebras which contains an algebra with infinitely many elements below the identity, or which contains the full group relation algebra on some infinite group (or on arbitrarily large finite groups), must have an undecidable equational theory. Then we construct an embedding of the lattice of all subsets of the natural numbers into the lattice of varieties of relation algebras such that the variety correlated with a set [italic capital]X of natural numbers has a decidable equational theory if and only if [italic capital]X is a decidable (i.e., recursive) set. Finally, we construct an example of an infinite, finitely generated, simple, representable relation algebra that has a decidable equational theory.'' -- Abstract.
The book deals with teaching mathematics, a core activity of the contemporary university. It is suitable for the library of every university and mathematician. It features a broad range of topics (technology, pedagogy, philosophy, course content) of interest and value to all who teach university mathematics. This is one of the few books dealing with this essential subject.
The International Congress on Mathematical Education (ICME) is the largest international conference on mathematics education in the world. This quadrennial event is organized under the auspices of the International Commission on Mathematical Instruction (ICMI). This book, the Proceedings of ICME-14, presents the latest trends in mathematics education research and mathematics teaching practices at all levels. Each chapter covers an extensive range of topics in mathematics education.Volume I consists of 4 Plenary Lectures, 3 Plenary Panels, 5 Lectures of Awardees, 4 Survey Teams, 62 Topic Study Groups, 13 Discussion Groups, 20 Workshops, a Thematic Afternoon, and an Early Career Researcher Day...
This volume is about tree-like structures, namely semilinear ordering, general betweenness relations, C-relations and D-relations. It contains a systematic study of betweenness and introduces C- and D- relations to describe the behaviour of points at infinity (leaves or ends or directions of trees). The focus is on structure theorems and on automorphism groups, with applications to the theory of infinite permutation groups.
Robert A. Rankin, one of the world's foremost authorities on modular forms and a founding editor of The Ramanujan Journal, died on January 27, 2001, at the age of 85. Rankin had broad interests and contributed fundamental papers in a wide variety of areas within number theory, geometry, analysis, and algebra. To commemorate Rankin's life and work, the editors have collected together 25 papers by several eminent mathematicians reflecting Rankin's extensive range of interests within number theory. Many of these papers reflect Rankin's primary focus in modular forms. It is the editors' fervent hope that mathematicians will be stimulated by these papers and gain a greater appreciation for Rankin's contributions to mathematics. This volume would be an inspiration to students and researchers in the areas of number theory and modular forms.