You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a good introduction to the classical elementary number theory and the modern algorithmic number theory, and their applications in computing and information technology, including computer systems design, cryptography and network security. In this second edition proofs of many theorems have been provided, further additions and corrections were made.
This book provides a comprehensive introduction to advanced topics in the computational and algorithmic aspects of number theory, focusing on applications in cryptography. Readers will learn to develop fast algorithms, including quantum algorithms, to solve various classic and modern number theoretic problems. Key problems include prime number generation, primality testing, integer factorization, discrete logarithms, elliptic curve arithmetic, conjecture and numerical verification. The author discusses quantum algorithms for solving the Integer Factorization Problem (IFP), the Discrete Logarithm Problem (DLP), and the Elliptic Curve Discrete Logarithm Problem (ECDLP) and for attacking IFP, D...
The only book to provide a unified view of the interplay between computational number theory and cryptography Computational number theory and modern cryptography are two of the most important and fundamental research fields in information security. In this book, Song Y. Yang combines knowledge of these two critical fields, providing a unified view of the relationships between computational number theory and cryptography. The author takes an innovative approach, presenting mathematical ideas first, thereupon treating cryptography as an immediate application of the mathematical concepts. The book also presents topics from number theory, which are relevant for applications in public-key cryptog...
The cryptosystems based on the Integer Factorization Problem (IFP), the Discrete Logarithm Problem (DLP) and the Elliptic Curve Discrete Logarithm Problem (ECDLP) are essentially the only three types of practical public-key cryptosystems in use. The security of these cryptosystems relies heavily on these three infeasible problems, as no polynomial-time algorithms exist for them so far. However, polynomial-time quantum algorithms for IFP, DLP and ECDLP do exist, provided that a practical quantum computer exists. Quantum Attacks on Public-Key Cryptosystems presemts almost all known quantum computing based attacks on public-key cryptosystems, with an emphasis on quantum algorithms for IFP, DLP, and ECDLP. It also discusses some quantum resistant cryptosystems to replace the IFP, DLP and ECDLP based cryptosystems. This book is intended to be used either as a graduate text in computing, communications and mathematics, or as a basic reference in the field.
Primality Testing and Integer Factorization in Public-Key Cryptography introduces various algorithms for primality testing and integer factorization, with their applications in public-key cryptography and information security. More specifically, this book explores basic concepts and results in number theory in Chapter 1. Chapter 2 discusses various algorithms for primality testing and prime number generation, with an emphasis on the Miller-Rabin probabilistic test, the Goldwasser-Kilian and Atkin-Morain elliptic curve tests, and the Agrawal-Kayal-Saxena deterministic test for primality. Chapter 3 introduces various algorithms, particularly the Elliptic Curve Method (ECM), the Quadratic Sieve (QS) and the Number Field Sieve (NFS) for integer factorization. This chapter also discusses some other computational problems that are related to factoring, such as the square root problem, the discrete logarithm problem and the quadratic residuosity problem.
The 15th International Workshop on Conceptual Structures ICCS 2007 brings together numerous discussions between international groups of researchers from the field of Information and Communications Technology (ICT). At ICCS 2007 some of the world’s best minds in information technology, arts, humanities and social science met to explore novel ways that ICT can augment human intelligence. The workshops include, Rough sets and data mining, and ubiquitous and collaborative computing.
This volume reviews the latest trends in organic optoelectronic materials. Each comprehensive chapter allows graduate students and newcomers to the field to grasp the basics, whilst also ensuring that they have the most up-to-date overview of the latest research. Topics include: organic conductors and semiconductors; conducting polymers and conjugated polymer semiconductors, as well as their applications in organic field-effect-transistors; organic light-emitting diodes; and organic photovoltaics and transparent conducting electrodes. The molecular structures, synthesis methods, physicochemical and optoelectronic properties of the organic optoelectronic materials are also introduced and described in detail. The authors also elucidate the structures and working mechanisms of organic optoelectronic devices and outline fundamental scientific problems and future research directions. This volume is invaluable to all those interested in organic optoelectronic materials.
Gastrointestinal cancers are among the most common cancer types, based on the Cancer Genome Atlas. GI cancers are within the most frequent malignancy, with almost 150.000 new cases in 2020. On one hand a big number of researches are focused on the diagnosis, new diagnostic approaches in upper and lower gastrointestinal tract cancers. On the other hand in the last 10 years several papers had been published about the possible therapeutic targets, pointing to precision and personalized medicine.
This handbook summarizes the current advancements and growth in sustainable carbonaceous porous materials for fabrication and revival of energy devices, fuel cells, sensors technology, solar cell technology, stealth technology in addition to biomedical applications. It also covers the potential applications of carbon materials in various fields such as chemical, engineering, biomedical and environmental sciences. It also confers the prospective utilization of 2D and 3D hierarchical porous carbon in different interdisciplinary engineering applications. The book discusses major challenges faced in the development of cost-effective future energy storage strategies and provides effective solutions for improvement in the performance of carbon-based materials. Given the content, this handbook will be useful for students, researchers and professionals working in the area of material chemistry and allied fields.
This book addresses the use of ionic liquids in biotransformation and organocatalysis. Its major parts include: an overview of the fundamentals of ionic liquids and their interactions with proteins and enzymes; the use of ILs in biotransformations; non-solvent applications such as additives, membranes, substrate anchoring, and the use of ILs in organocatalysis (from solvents to co-catalysts and new reactivities, as well as non-solvent applications such as anchoring and immobilization).