You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Professor Stephen Lerman has been a leader in the field of mathematics education for thirty years. His work is extensive, making many significant contributions to a number of key areas of research. Stephen retired from South Bank University in 2012, where he had worked for over 20 years, though he continues to work at Loughborough University. In this book several of his long standing colleagues and collaborators reflect on his contribution to mathematics education, and in so doing illustrate how some of Steve’s ideas and interventions have resulted in significant shifts in the domain.
None
Advances in Mathematics Education is a new and innovative book series published by Springer that builds on the success and the rich history of ZDM—The Inter- tional Journal on Mathematics Education (formerly known as Zentralblatt für - daktik der Mathematik). One characteristic of ZDM since its inception in 1969 has been the publication of themed issues that aim to bring the state-of-the-art on c- tral sub-domains within mathematics education. The published issues include a rich variety of topics and contributions that continue to be of relevance today. The newly established monograph series aims to integrate, synthesize and extend papers from previously published themed issues of importance today, by orienting these issues towards the future state of the art. The main idea is to move the ?eld forward with a book series that looks to the future by building on the past by carefully choosing viable ideas that can fruitfully mutate and inspire the next generations. Taking ins- ration from Henri Poincaré (1854–1912), who said “To create consists precisely in not making useless combinations and in making those which are useful and which are only a small minority.
Although many agree that all teaching rests on a theory of knowledge, there has been no in-depth exploration of the implications of the philosophy of mathematics for education. This is Paul Ernest's aim. Building on the work of Lakatos and Wittgenstein it challenges the prevalent notion that mathematical knowledge is certain, absolute and neutral, and offers instead an account of mathematics as a social construction. This has profound educational implications for social issues, including gender, race and multiculturalism; for pedagogy, including investigations and problem solving; and challenges hierarchical views of mathematics, learning and ability. Beyond this, the book offers a well-grou...
Fundamental Constructs in Mathematics Education is a unique sourcebook crafted from classic texts, research papers and books in mathematics education. Linked together by the editors' narrative, the book provides a fascinating examination of, and insight into, key constructs in mathematics education and how they link together. The choice of constructs is based on (some of) the many constructs which have proved fruitful in research and which have informed choices made by teachers. The book is divided into two parts: learning and teaching. The first part includes views about how people learn - from Plato to Dewey, as well as constructivism, activity theory and French didactiques. The second part includes extracts concerned with initiating, sustaining and bringing to a conclusion learners' work on mathematical tasks. Fundamental Constructs in Mathematics Education provides access to a wide range of constructs in mathematics education and orients the reader towards important original sources.
Learning Mathematics brings together a collection of interrelated and forward-looking chapters by internationally recognized experts that explores changes in the theories and practices of learning (and teaching) mathematics. The authors reject a traditional, transmission view of the teaching of mathematics which has proved so ineffective for learning. In its place they offer information gathered from research and from practice about effects on the learners seeking to create and negotiate meaning. Learners are presented as actively attempting to make sense of the mathematics they encounter, and learners, teachers and researchers are offered examples of ho such sense-making activities, incorporated into mathematics classrooms, impact on coming to know. The book celebrates both diversity, in the range of different perspectives, contributions and topics, and unity, in the linking chapters and themes, It will be fascinating reading for those mathematics educators who are eager to engage with a socio-cultural perspective in order to better understand the complexity of learning mathematics.
This book is open access under a CC BY 4.0 license. The book presents the Proceedings of the 13th International Congress on Mathematical Education (ICME-13) and is based on the presentations given at the 13th International Congress on Mathematical Education (ICME-13). ICME-13 took place from 24th- 31st July 2016 at the University of Hamburg in Hamburg (Germany). The congress was hosted by the Society of Didactics of Mathematics (Gesellschaft für Didaktik der Mathematik - GDM) and took place under the auspices of the International Commission on Mathematical Instruction (ICMI). ICME-13 brought together about 3.500 mathematics educators from 105 countries, additionally 250 teachers from German...
An innovative contribution to educational research is to be found in this book. The book addresses the need to generate texts that assist educators and future educators in taking up new research and making sense of it. It offers unique approaches to interpreting research within the mathematics education field and takes its place in a growing set of resources. The book will appeal to teacher educators, student teachers, and mathematics education researchers alike.
Settle Your Disputes without Fighting, Folding or Fleeing