You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An introduction to the area of condensed matter in a nutshell. This textbook covers the standard topics, including crystal structures, energy bands, phonons, optical properties, ferroelectricity, superconductivity, and magnetism.
Presents papers by theoretical physicist J. Robert Schrieffer on topics in superconductivity and condensed matter physics.
The development of transistors, the integrated circuit, liquid-crystal displays, and even DVD players can be traced back to fundamental research pioneered in the field of condensed-matter and materials physics (CMPP). The United States has been a leader in the field, but that status is now in jeopardy. Condensed-Matter and Materials Physics, part of the Physics 2010 decadal survey project, assesses the present state of the field in the United States, examines possible directions for the 21st century, offers a set of scientific challenges for American researchers to tackle, and makes recommendations for effective spending of federal funds. This book maintains that the field of CMPP is certain...
The essential beginner's guide to string theory The Little Book of String Theory offers a short, accessible, and entertaining introduction to one of the most talked-about areas of physics today. String theory has been called the "theory of everything." It seeks to describe all the fundamental forces of nature. It encompasses gravity and quantum mechanics in one unifying theory. But it is unproven and fraught with controversy. After reading this book, you'll be able to draw your own conclusions about string theory. Steve Gubser begins by explaining Einstein's famous equation E = mc2, quantum mechanics, and black holes. He then gives readers a crash course in string theory and the core ideas b...
Scaling and self-similarity ideas and methods in theoretical physics have, in the last twenty-five years, coalesced into renormalization-group methods. This book analyzes, from a single perspective, some of the most important applications: the critical-point theory in classical statistical mechanics, the scalar quantum field theories in two and three space-time dimensions, and Tomonaga's theory of the ground state of one-dimensional Fermi systems. The dimension dependence is discussed together with the related existence of anomalies (in Tomonaga's theory and in 4 -e dimensions for the critical point). The theory of Bose condensation at zero temperature in three space dimensions is also considered. Attention is focused on results that can in principle be formally established from a mathematical point of view. The 4 -e dimensions theory, Bose condensation, as well as a few other statements are exceptions to this rule, because no complete treatment is yet available. However, the truly mathematical details are intentionally omitted and only referred to. This is done with the purpose of stressing the unifying conceptual structure rather than the technical differences or subtleties.
Since the 1980s, a general theme in the study of high-temperature superconductors has been to test the BCS theory and its predictions against new data. At the same time, this process has engendered new physics, new materials, and new theoretical frameworks. Remarkable advances have occurred in sample quality and in single crystals, in hole and electron doping in the development of sister compounds with lower transition temperatures, and in instruments to probe structure and dynamics. Handbook of High-Temperature Superconductvity is a comprehensive and in-depth treatment of both experimental and theoretical methodologies by the the world's top leaders in the field. The Editor, Nobel Laureate J. Robert Schrieffer, and Associate Editor James S. Brooks, have produced a unified, coherent work providing a global view of high-temperature superconductivity covering the materials, the relationships with heavy-fermion and organic systems, and the many formidable challenges that remain.
The physics of extended systems is a topic of great interest for the experimentalist and the theoretician alike. There exists a large literature on this subject in which solutions, bifurcations, fronts, and the dynamical stability of these objects are discussed. To the uninitiated reader, the theoretical methods that lead to the various results often seem somewhat ad hoc, and it is not clear how to generalize them to the nextthat is, not yet solvedproblem. In an introduction to the subject of instabilities in spatially infinite systems, Pierre Collet and Jean-Pierre Eckmann aim to give a systematic account of these methods, and to work out the relevant features that make them operational. Th...
A Mind Over Matter is a biography of the Nobel Prize-winning theoretical physicist, Philip W. Anderson. Anderson is widely regarded as one of the most accomplished and influential physicists of the second half of the twentieth century. Unlike the physicists who appear on television or write popular books, Anderson studied the physics of the very many, i.e., the science of how vast numbers of atoms conspire together to create everything from liquid water to sparkling diamonds, and from semiconductors (essential for cell phones and computers) to superconductors (essential for MRI machines). More than any other single person, Anderson transformed the patchwork field of solid-state physics into the intellectually coherent discipline now called condensed matter physics. He developed important concepts that transcended physics, and influenced the scientifically literate public through his essays and articles. Book jacket.
This extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in superconductivity. Covering the entire field, this unparalleled resource carefully blends theoretical studies with experimental results to provide an indispensable foundation for further research. Leading researchers, including Nobel laureates, describe the state of the art in conventional and unconventional superconductors. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued, intense research into electron-phone based superconductivity.