You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.
A morphism of algebraic varieties (over a field characteristic 0) is monomial if it can locally be represented in e'tale neighborhoods by a pure monomial mappings. The book gives proof that a dominant morphism from a nonsingular 3-fold X to a surface S can be monomialized by performing sequences of blowups of nonsingular subvarieties of X and S. The construction is very explicit and uses techniques from resolution of singularities. A research monograph in algebraic geometry, it addresses researchers and graduate students.
Resolution of Singularities has long been considered as being a difficult to access area of mathematics. The more systematic and simpler proofs that have appeared in the last few years in zero characteristic now give us a much better understanding of singularities. They reveal the aesthetics of both the logical structure of the proof and the various methods used in it. The present volume is intended for readers who are not yet experts but always wondered about the intricacies of resolution. As such, it provides a gentle and quite comprehensive introduction to this amazing field. The book may tempt the reader to enter more deeply into a topic where many mysteries--especially the positive characteristic case--await to be disclosed. Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).
This textbook offers a thorough, modern introduction into commutative algebra. It is intented mainly to serve as a guide for a course of one or two semesters, or for self-study. The carefully selected subject matter concentrates on the concepts and results at the center of the field. The book maintains a constant view on the natural geometric context, enabling the reader to gain a deeper understanding of the material. Although it emphasizes theory, three chapters are devoted to computational aspects. Many illustrative examples and exercises enrich the text.
The notion of singularity is basic to mathematics. In algebraic geometry, the resolution of singularities by simple algebraic mappings is truly a fundamental problem. It has a complete solution in characteristic zero and partial solutions in arbitrary characteristic. The resolution of singularities in characteristic zero is a key result used in many subjects besides algebraic geometry, such as differential equations, dynamical systems, number theory, the theory of $\mathcal{D}$-modules, topology, and mathematical physics. This book is a rigorous, but instructional, look at resolutions. A simplified proof, based on canonical resolutions, is given for characteristic zero. There are several pro...
This volume contains the combined Proceedings of the Second International Meeting on Commutative Algebra and Related Areas (SIMCARA) held from July 22–26, 2019, at the Universidade de São Paulo, São Carlos, Brazil, and the AMS Special Session on Commutative Algebra, held from September 14–15, 2019, at the University of Wisconsin-Madison, Wisconsin. These two meetings celebrated the combined 150th birthday of Roger and Sylvia Wiegand. The Wiegands have been a fixture in the commutative algebra community, as well as the wider mathematical community, for over 40 years. Articles in this volume cover various areas of factorization theory, homological algebra, ideal theory, representation theory, homological rigidity, maximal Cohen-Macaulay modules, and the behavior of prime spectra under completion, as well as some topics in related fields. The volume itself bears evidence that the area of commutative algebra is a vibrant one and highlights the influence of the Wiegands on generations of researchers. It will be useful to researchers and graduate students.
Lists for 19 include the Mathematical Association of America, and 1955- also the Society for Industrial and Applied Mathematics.