You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides readers with an incisive look at cutting-edge peridynamic modeling methods, numerical techniques, their applications, and potential future directions for the field. It starts with an introductory chapter authored by Stewart Silling, who originally developed peridynamics. It then looks at new concepts in the field, with chapters covering dual-horizon peridynamics, peridynamics for axisymmetric analysis, beam and plate models in peridynamics, coupled peridynamics and XFEM, peridynamics for dynamic fracture modeling, and more. From there, it segues into coverage of cutting-edge applications of peridynamics, exploring its biological applications, modeling at the nanoscale, per...
This handbook covers the peridynamic modeling of failure and damage. Peridynamics is a reformulation of continuum mechanics based on integration of interactions rather than spatial differentiation of displacements. The book extends the classical theory of continuum mechanics to allow unguided modeling of crack propagation/fracture in brittle, quasi-brittle, and ductile materials; autonomous transition from continuous damage/fragmentation to fracture; modeling of long-range forces within a continuous body; and multiscale coupling in a consistent mathematical framework.
This book presents the peridynamic theory, which provides the capability for improved modeling of progressive failure in materials and structures, and paves the way for addressing multi-physics and multi-scale problems. The book provides students and researchers with a theoretical and practical knowledge of the peridynamic theory and the skills required to analyze engineering problems. The text may be used in courses such as Multi-physics and Multi-scale Analysis, Nonlocal Computational Mechanics, and Computational Damage Prediction. Sample algorithms for the solution of benchmark problems are available so that the reader can modify these algorithms, and develop their own solution algorithms for specific problems. Students and researchers will find this book an essential and invaluable reference on the topic.
The year 2018 marked the 75th anniversary of the founding of Mathematics of Computation, one of the four primary research journals published by the American Mathematical Society and the oldest research journal devoted to computational mathematics. To celebrate this milestone, the symposium “Celebrating 75 Years of Mathematics of Computation” was held from November 1–3, 2018, at the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The sixteen papers in this volume, written by the symposium speakers and editors of the journal, include both survey articles and new contributions. On the discrete side, there are four papers covering top...
Explores the relationship between discrete and continuum mechanics as a tool to model new and complex metamaterials. Including a comprehensive bibliography and historical review of the field, and a pedagogical mathematical treatment, it is ideal for graduate students and researchers in mechanical and civil engineering, and materials science.
This dictionary offers clear and reliable explanations of over 100 keywords covering the entire field of non-classical continuum mechanics and generalized mechanics, including the theory of elasticity, heat conduction, thermodynamic and electromagnetic continua, as well as applied mathematics. Every entry includes the historical background and the underlying theory, basic equations and typical applications. The reference list for each entry provides a link to the original articles and the most important in-depth theoretical works. Last but not least, ever y entry is followed by a cross-reference to other related subject entries in the dictionary.
This volume collects papers based on plenary and invited talks given at the 50th Barrett Memorial Lectures on Approximation, Applications, and Analysis of Nonlocal, Nonlinear Models that was organized by the University of Tennessee, Knoxville and held virtually in May 2021. The three-day meeting brought together experts from the computational, scientific, engineering, and mathematical communities who work with nonlocal models. These proceedings collect contributions and give a survey of the state of the art in computational practices, mathematical analysis, applications of nonlocal models, and explorations of new application domains. The volume benefits from the mixture of contributions by computational scientists, mathematicians, and application specialists. The content is suitable for graduate students as well as specialists working with nonlocal models and covers topics on fractional PDEs, regularity theory for kinetic equations, approximation theory for fractional diffusion, analysis of nonlocal diffusion model as a bridge between local and fractional PDEs, and more.
This book presents recent improvements in peridynamic modeling of structures. It provides sufficient theory and numerical implementation helpful to both new and existing researchers in the field. The main focus of the book is on the non-ordinary state-based (NOSB) peridynamics (PD) and its applications for performing finite deformation. It presents the framework for modeling high stretch polymers, viscoelastic materials, thermoelasticity, plasticity, and creep. It provides a systematic derivation for dimensionally reduced structures such as axisymmetric structures and beams. Also, it presents a novel approach to impose boundary conditions without suffering from displacement kinks near the bo...
This book introduces the peridynamic (PD) differential operator, which enables the nonlocal form of local differentiation. PD is a bridge between differentiation and integration. It provides the computational solution of complex field equations and evaluation of derivatives of smooth or scattered data in the presence of discontinuities. PD also serves as a natural filter to smooth noisy data and to recover missing data. This book starts with an overview of the PD concept, the derivation of the PD differential operator, its numerical implementation for the spatial and temporal derivatives, and the description of sources of error. The applications concern interpolation, regression, and smoothi...