You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Can we expect our scientific theories to make up a unified structure, or do they form a kind of "patchwork" whose pieces remain independent from each other? Does the proliferation of sometimes-incompatible representations of the same phenomenon compromise the ability of science to deliver reliable knowledge? Is there a single correct way to classify things that science should try to discover, or is taxonomic pluralism here to stay? These questions are at the heart of philosophical debate on the unity or plurality of science, one of the most central issues in philosophy of science today. This book offers a critical overview and a new structure of this debate. It focuses on the methodological, epistemic, and metaphysical commitments of various philosophical attitudes surrounding monism and pluralism, and offers novel perspectives and pluralist theses on scientific methods and objects, reductionism, plurality of representations, natural kinds, and scientific classifications.
Scientific pluralism is an issue at the forefront of philosophy of science. This landmark work addresses the question, Can pluralism be advanced as a general, philosophical interpretation of science? Scientific Pluralism demonstrates the viability of the view that some phenomena require multiple accounts. Pluralists observe that scientists present various—sometimes even incompatible—models of the world and argue that this is due to the complexity of the world and representational limitations. Including investigations in biology, physics, economics, psychology, and mathematics, this work provides an empirical basis for a consistent stance on pluralism and makes the case that it should cha...
Thirty years after the pioneering enterprise of Neugebauer and collabo rators, the astronomical sky is surveyed anew in the near infrared range with a gain in sensitivity greater than 4 orders of magnitude. Data have started to come through the "pipelines" routinely and at the turn of the century, the astronomical community will be provided with immense databases that will eventually contain accurate positions and 3- colour (or even 4-colour after merging DENIS and 2MASS data) photometry for hundreds million of stars and millions of galaxies. This fantastic harvest of data will eventually result of the huge effort that has been deployed on both sides of the Antlantic to promote 2 major projects, 2MASS and DENIS. rd The basic aim of this 3 Euroconference (and last in the series), was to put in close contact the scientific teams of 2MASS and DENIS in order to present and discuss the first significant results of the two surveys and to start promoting possible future plans
This interdisciplinary monograph in philosophy of medicine examines models of explanation in health science and their relation with current medical trends, such as personalized and person-centered medicine. Medicine has provided challenging case studies for the general philosophy of science that have prompted rethinking of a wide range of philosophical notions – such as scientific law, theory and evidence – and contributed to the elaboration of pluralistic approaches to modeling, causality and explanation. The health sciences have increasingly recognized the role of philosophy of medicine as both a field of conceptual and methodological reflection, capable of addressing practical issues,...
This volume showcases the best of recent research in the philosophy of science. A compilation of papers presented at the EPSA 13, it explores a broad distribution of topics such as causation, truthlikeness, scientific representation, gender-specific medicine, laws of nature, science funding and the wisdom of crowds. Papers are organised into headings which form the structure of the book. Readers will find that it covers several major fields within the philosophy of science, from general philosophy of science to the more specific philosophy of physics, philosophy of chemistry, philosophy of the life sciences, philosophy of psychology, and philosophy of the social sciences and humanities, amongst others. This volume provides an excellent overview of the state of the art in the philosophy of science, as practiced in different European countries and beyond. It will appeal to researchers with an interest in the philosophical underpinnings of their own discipline, and to philosophers who wish to explore the latest work on the themes explored.
This edited volume explores the interplay between philosophies in a wide-ranging analysis of how technological applications in science inform our systems of thought. Beginning with a historical background, the volume moves on to explore a host of topics, such as the uses of technology in scientific observations and experiments, the salient relationship between technology and mechanistic notions in science and the ways in which today’s vast and increasing computing power helps scientists achieve results that were previously unattainable. Technology allows today’s researchers to gather, in a matter of hours, data that would previously have taken weeks or months to assemble. It also acts as...
Striving to boldly redirect the philosophy of science, this book by renowned philosopher Philip Kitcher examines the heated debate surrounding the role of science in shaping our lives. Kitcher explores the sharp divide between those who believe that the pursuit of scientific knowledge is always valuable and necessary--the purists--and those who believe that it invariably serves the interests of people in positions of power. In a daring turn, he rejects both perspectives, working out a more realistic image of the sciences--one that allows for the possibility of scientific truth, but nonetheless permits social consensus to determine which avenues to investigate. He then proposes a democratic and deliberative framework for responsible scientists to follow. Controversial, powerful, yet engaging, this volume will appeal to a wide range of readers. Kitcher's nuanced analysis and authorititative conclusion will interest countless scientists as well as all readers of science--scholars and laypersons alike.
The major purpose of this book is to clarify the importance of non-technological factors in innovation to cope with contemporary complex societal issues while critically reconsidering the relations between science, technology, innovation (STI), and society. For a few decades now, innovation—mainly derived from technological advancement—has been considered a driving force of economic and societal development and prosperity. With that in mind, the following questions are dealt with in this book: What are the non-technological sources of innovation? What can the progress of STI bring to humankind? What roles will society be expected to play in the new model of innovation? The authors argue ...
Large area sky surveys are now a reality in the radio, IR, optical and X-ray passbands. In the next few years, new surveys using optical, UV and IR mosaic cameras with high throughput digital detectors will expand the dynamic range and accuracy of photometry and astrometry of objects over a significant fraction of the entire sky. Parallel X-ray and radio surveys over the same areas will produce astronomical image and spectroscopic databases of unprecedented size and quality. The combined data sets will provide significant new constraints on star formation, stellar dynamics, Galactic structure, the evolution of galaxies and large scale structure, as well as new opportunities to identify rare objects in the solar system and the Galaxy. Large area surveys have formidable data acquisition, processing, archiving, and data distribution demands and this meeting provided a forum for sharing experiences amongst workers specializing in different wavebands as well as discussing how multiband observations can reveal fundamental relationships in our understanding of the Universe.