You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Drawing from experts and top researchers from around the world, this book presents current developments in a variety of areas that impact offshore and ocean engineering.
None
This book is intended as an introductory textbook for graduate students and as a reference book for engineers and scientists working in the field of coastal engineering. As such it gives a description of the theories for wave and nearshore hydrodynamics. It is meant to de-mystify the topics and hence starts at a fairly basic level. It requires knowledge of fluid mechanics equivalent to a first year graduate level. At the end of each topic, an attempt is made to give an overview of the present stage of the scientific development in that area with numerous references for further studies.
This is the 20th Volume in the series Memorial Tributes compiled by the National Academy of Engineering as a personal remembrance of the lives and outstanding achievements of its members and foreign associates. These volumes are intended to stand as an enduring record of the many contributions of engineers and engineering to the benefit of humankind. In most cases, the authors of the tributes are contemporaries or colleagues who had personal knowledge of the interests and the engineering accomplishments of the deceased. Through its members and foreign associates, the Academy carries out the responsibilities for which it was established in 1964. Under the charter of the National Academy of Sc...
This book is intended as an introduction to classical water wave theory for the college senior or first year graduate student. The material is self-contained; almost all mathematical and engineering concepts are presented or derived in the text, thus making the book accessible to practicing engineers as well.The book commences with a review of fluid mechanics and basic vector concepts. The formulation and solution of the governing boundary value problem for small amplitude waves are developed and the kinematic and pressure fields for short and long waves are explored. The transformation of waves due to variations in depth and their interactions with structures are derived. Wavemaker theories...
This book presents a theoretical treatment, as well as a summary of practical methods of computation, of the forces and moments that act on marine craft. Its aim is to provide the tools necessary for the prediction or simulation of craft motions in calm water and in waves. In addition to developing the required equations, the author gives relations that permit at least approximate evaluation of the coefficients so that useful results can be obtained. The approach begins with the equations of motion for rigid bodies, relative to fixed- and moving-coordinate systems; then, the hydrodynamic forces are examined, starting with hydrostatics and progressing to the forces on a moving vehicle in calm...
This book presents a theoretical treatment, as well as a summary of practical methods of computation, of the forces and moments that act on marine craft. Its aim is to provide the tools necessary for the prediction or simulation of craft motions in calm water and in waves. In addition to developing the required equations, the author gives relations that permit at least approximate evaluation of the coefficients so that useful results can be obtained. The approach begins with the equations of motion for rigid bodies, relative to fixed- and moving-coordinate systems; then, the hydrodynamic forces are examined, starting with hydrostatics and progressing to the forces on a moving vehicle in calm...
Encompassing a wide range of topics within fluid structure interaction, this volume features contributions on topics such as hydrodynamic forces, offshore structure and ship dynamics, structure response to severe shock and blast loading, and the mechanics of cables, risers and moorings.
This book focuses on: (1) the physics of the fundamental dynamics of fluids and of semi-immersed Lagrangian solid bodies that are responding to wave-induced loads; (2) the scaling of dimensional equations and boundary value problems in order to determine a small dimensionless parameter ε that may be applied to linearize the equations and the boundary value problems so as to obtain a linear system; (3) the replacement of differential and integral calculus with algebraic equations that require only algebraic substitutions instead of differentiations and integrations; and (4) the importance of comparing numerical and analytical computations with data from laboratories and/or nature.