You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Over the past decade, system-on-chip (SoC) designs have evolved to address the ever increasing complexity of applications, fueled by the era of digital convergence. Improvements in process technology have effectively shrunk board-level components so they can be integrated on a single chip. New on-chip communication architectures have been designed to support all inter-component communication in a SoC design. These communication architecture fabrics have a critical impact on the power consumption, performance, cost and design cycle time of modern SoC designs. As application complexity strains the communication backbone of SoC designs, academic and industrial R&D efforts and dollars are increa...
This book provides comprehensive coverage of various solutions that address issues related to real-time performance, security, and robustness in emerging automotive platforms. The authors discuss recent advances towards the goal of enabling reliable, secure, and robust, time-critical automotive cyber-physical systems, using advanced optimization and machine learning techniques. The focus is on presenting state-of-the-art solutions to various challenges including real-time data scheduling, secure communication within and outside the vehicle, tolerance to faults, optimizing the use of resource-constrained automotive ECUs, intrusion detection, and developing robust perception and control techniques for increasingly autonomous vehicles.
While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of human...
This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits. Discusses efficient implementation of machine learning in embedded, CPS, IoT, and edge computing; Offers comprehensive coverage of hardware design, software design, and hardware/software co-design and co-optimization; Describes real applications to demonstrate how embedded, CPS, IoT, and edge applications benefit from machine learning.
The book covers a range of topics dealing with emerging computing technologies which are being developed in response to challenges faced due to scaling CMOS technologies. It provides a sneak peek into the capabilities unleashed by these technologies across the complete system stack, with contributions by experts discussing device technology, circuit, architecture and design automation flows. Presenting a gradual progression of the individual sub-domains and the open research and adoption challenges, this book will be of interest to industry and academic researchers, technocrats and policymakers. Chapters "Innovative Memory Architectures Using Functionality Enhanced Devices" and "Intelligent Edge Biomedical Sensors in the Internet of Things (IoT) Era" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
The book presents the proceedings of two conferences: The 22nd International Conference on Artificial Intelligence (ICAI’20) and The 4th International Conference on Applied Cognitive Computing (ACC’20). The conferences took place in Las Vegas, NV, USA, July 27-30, 2020, and are part of the larger 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20), which features 20 major tracks. Topics include: deep learning; neural networks; brain models; cognitive science; natural language processing; fuzzy logic and soft computing (ICAI) and novel computationally intelligent algorithms; bio inspired cognitive algorithms; modeling human brain processing systems (ACC); and more. Authors include academics, researchers, and professionals. Presents the proceedings of two conferences as part of the 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20); Includes the tracks: artificial intelligence and applied cognitive computing; Features papers from the 22nd International Conference on AI (ICAI’20) and the 4th International Conference on Applied Cognitive Computing (ACC’20).
Covers the latest developments in PNT technologies, including integrated satellite navigation, sensor systems, and civil applications Featuring sixty-four chapters that are divided into six parts, this two-volume work provides comprehensive coverage of the state-of-the-art in satellite-based position, navigation, and timing (PNT) technologies and civilian applications. It also examines alternative navigation technologies based on other signals-of-opportunity and sensors and offers a comprehensive treatment on integrated PNT systems for consumer and commercial applications. Volume 1 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor S...
Quality Electronic Design (QED)’s landscape spans a vast region where territories of many participating disciplines and technologies overlap. This book explores the latest trends in several key topics related to quality electronic design, with emphasis on Hardware Security, Cybersecurity, Machine Learning, and application of Artificial Intelligence (AI). The book includes topics in nonvolatile memories (NVM), Internet of Things (IoT), FPGA, and Neural Networks.
Details a real-world product that applies a cutting-edge multi-core architecture Increasingly demanding modern applications—such as those used in telecommunications networking and real-time processing of audio, video, and multimedia streams—require multiple processors to achieve computational performance at the rate of a few giga-operations per second. This necessity for speed and manageable power consumption makes it likely that the next generation of embedded processing systems will include hundreds of cores, while being increasingly programmable, blending processors and configurable hardware in a power-efficient manner. Multi-Core Embedded Systems presents a variety of perspectives th...
The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends.