You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In this pioneering book, Cecile Chu-chin Sun establishes a sound and effective comparative methodology by using a multifaceted understanding of the concept of repetitionùnot merely a recurrence of words and imagesùas a key perspective from which to compare the poetry and poetics from these two traditions. --
Geometric analysis has become one of the most important tools in geometry and topology. In their books on the Ricci flow, the authors reveal the depth and breadth of this flow method for understanding the structure of manifolds. With the present book, the authors focus on the analytic aspects of Ricci flow.
The Ricci flow uses methods from analysis to study the geometry and topology of manifolds. With the third part of their volume on techniques and applications of the theory, the authors give a presentation of Hamilton's Ricci flow for graduate students and mathematicians interested in working in the subject, with an emphasis on the geometric and analytic aspects. The topics include Perelman's entropy functional, point picking methods, aspects of Perelman's theory of $\kappa$-solutions including the $\kappa$-gap theorem, compactness theorem and derivative estimates, Perelman's pseudolocality theorem, and aspects of the heat equation with respect to static and evolving metrics related to Ricci ...
The Workshop on Geometric Evolution Equations was a gathering of experts that produced this comprehensive collection of articles. Many of the papers relate to the Ricci flow and Hamilton's program for understanding the geometry and topology of 3-manifolds. The use of evolution equations in geometry can lead to remarkable results. Of particular interest is the potential solution of Thurston's Geometrization Conjecture and the Poincare Conjecture. Yet applying the method poses serious technical problems. Contributors to this volume explain some of these issues and demonstrate a noteworthy deftness in the handling of technical areas. Various topics in geometric evolution equations and related f...
Differential geometry is a subject related to many fields in mathematics and the sciences. The authors of this book provide a vertically integrated introduction to differential geometry and geometric analysis. The material is presented in three distinct parts: an introduction to geometry via submanifolds of Euclidean space, a first course in Riemannian geometry, and a graduate special topics course in geometric analysis, and it contains more than enough content to serve as a good textbook for a course in any of these three topics. The reader will learn about the classical theory of submanifolds, smooth manifolds, Riemannian comparison geometry, bundles, connections, and curvature, the Chern?...
The Ricci flow is a powerful technique that integrates geometry, topology, and analysis. Intuitively, the idea is to set up a PDE that evolves a metric according to its Ricci curvature. The resulting equation has much in common with the heat equation, which tends to 'flow' a given function to ever nicer functions. By analogy, the Ricci flow evolves an initial metric into improved metrics. Richard Hamilton began the systematic use of the Ricci flow in the early 1980s and applied it in particular to study 3-manifolds. Grisha Perelman has made recent breakthroughs aimed at completing Hamilton's program. The Ricci flow method is now central to our understanding of the geometry and topology of ma...
The book is devoted to the theory of algebraic geometric codes, a subject formed on the border of several domains of mathematics. On one side there are such classical areas as algebraic geometry and number theory; on the other, information transmission theory, combinatorics, finite geometries, dense packings, etc. The authors give a unique perspective on the subject. Whereas most books on coding theory build up coding theory from within, starting from elementary concepts and almost always finishing without reaching a certain depth, this book constantly looks for interpretations that connect coding theory to algebraic geometry and number theory. There are no prerequisites other than a standard algebra graduate course. The first two chapters of the book can serve as an introduction to coding theory and algebraic geometry respectively. Special attention is given to the geometry of curves over finite fields in the third chapter. Finally, in the last chapter the authors explain relations between all of these: the theory of algebraic geometric codes.
Random matrix theory is a wide and growing field with a variety of concepts, results, and techniques and a vast range of applications in mathematics and the related sciences. The book, written by well-known experts, offers beginners a fairly balanced collection of basic facts and methods (Part 1 on classical ensembles) and presents experts with an exposition of recent advances in the subject (Parts 2 and 3 on invariant ensembles and ensembles with independent entries). The text includes many of the authors' results and methods on several main aspects of the theory, thus allowing them to present a unique and personal perspective on the subject and to cover many topics using a unified approach...
The second Arolla conference on algebraic topology brought together specialists covering a wide range of homotopy theory and $K$-theory. These proceedings reflect both the variety of talks given at the conference and the diversity of promising research directions in homotopy theory. The articles contained in this volume include significant contributions to classical unstable homotopy theory, model category theory, equivariant homotopy theory, and the homotopy theory of fusionsystems, as well as to $K$-theory of both local fields and $C*$-algebras.