You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Laser processing is now a rapidly increasing field with many real and potential applications in different areas of technology such as micromecha nics, metallurgy, integrated optics, and semiconductor device fabrication. The neces s ity for such soph i st i cated 1 i ght sources as 1 asers is based on the spatial coherence and the monochromaticity of laser light. The spatial coherence permits extreme focussing of the laser light resulting in the availability of high energy densities which can be used for strongly loca lized heat- and chemical-treatment of materials, with a resolution down to 1 ess than 1 lJIll. When us i ng pul sed or scanned cw-l asers, 1 oca 1 i zat i on in time is also pos...
This book reviews the solid core of fundamental scientific knowledge on laser-stimulated surface chemistry that has accumulated over the past few years. It provides a useful overview for the student and interested non-expert as well as essential reference data (photodissociation cross sections, thermochemical constants, etc.) for the active researcher.
Studies in Surface Science and Catalysis 14: Vibrations at Surfaces documents the proceedings of the third International Conference on ""Vibrations at Surfaces"" held at Asilomar, California, from September 1-4, 1982. Almost all of the 102 papers presented at the meeting are published in this volume. The topics chosen for the eight sessions held over a span of three days were: (I) Vibrational Frequency Shifts and Widths-Lateral Interactions; (II) Dynamical Processes at Surfaces; (III) and (IV) Electron Loss Spectroscopy; (V) Raman and Surface Enhanced Raman Scattering; (VI) Infrared Absorption and Reflection Spectroscopy; (VII) Beam Surface Scattering Surface Phonons; (VIII) Electron Tunneling Spectroscopy - Surface Enhanced Raman Studies in Electrochemistry. In addition, C. B. Duke presented an introductory keynote surveying progress in the field since the last meeting. In the final session H. Ibach and T. Grimley presented conference overviews and future prospects for the field from an experimental and theoretical perspective. Also included in the Proceedings are four literature surveys on Energy Loss, Inelastic Tunneling, Infrared and Raman (SERS) papers.
Materials processing with lasers is a rapidly expanding field which is increasingly captivating the attention of scientists, engineers and manufacturers alike. The aspect of most interest to scientists is provided by the basic interaction mechanisms between the intense light of a laser and materials exposed to a chemically reactive or nonreactive surrounding medium. Engineers and manufacturers see in the laser a new tool which will not only make manufacturing cheaper, faster, cleaner and more accurate but which also opens up entirely new technologies and manufacturing methods that are simply not available using existing techniques. Actual and potential applications range from laser machining...
These volumes, 9 and 10, of Fracture Mechanics of Ceramics constitute the proceedings of an international symposium on the fracture mechanics of ceramic materials held at the Japan Fine Ceramics Center, Nagoya, Japan on July 15, 16, 17, 1991. These proceedings constitute the fifth pair of volumes of a continuing series of conferences. Volumes 1 and 2 were from the 1973 symposium, volumes 3 and 4 from a 1977 symposium, and volumes 5 and 6 from a 1981 symposium all of which were held at The Pennsylvania State University. Volumes 7 and 8 are from the 1985 symposium which was held at the Virginia Polytechnic Institute and State University. The theme ofthis conference, as for the previous four, focused on the mechanical behavior ofceramic materials in terms of the characteristics ofcracks, particularly the roles which they assume in the fracture processes and mechanisms. The 82 contributed papers by over 150 authors and co-authors represent the current state of that field. They address many of the theoretical and practical problems ofinterest to those scientists and engineers concerned with brittle fracture.
When we see a jumbo jet at the airport, we sometimes wonder how such a huge, heavy plane can fly high in the sky. To the extent that we think in a static way, it is certainly not understandable. In such a manner, dynamics yields behavior quite different from statics. When we want to prepare an iron nitride, for example, one of the most orthodox ways is to put iron in a nitrogen atmosphere under pressures higher than the dissociation pressure of the iron nitride at temperatures sufficiently high to let the nitrogen penetrate into the bulk iron. This is the way thermodynamics tells us to proceed, which requires an elaborate, expensive high-pressure apparatus, sophisticated techniques, and grea...
Direct-Write Technologies covers applications, materials, and the techniques in using direct-write technologies. This book provides an overview of the different direct write techniques currently available, as well as a comparison between the strengths and special attributes for each of the techniques. The techniques described open the door for building prototypes and testing materials. The book also provides an overview of the state-of-the-art technology involved in this field. Basic academic researchers and industrial development engineers who pattern thin film materials will want to have this text on their shelves as a resource for specific applications. Others in this or related fields wi...
Among the many intense light sources, excimer lasers have a unique set of properties that place them at the forefront of tooling for material processing. Their extreme versatility means that they can be used in many areas of materials science and medicine. But three conditions need to be fulfilled in order that their versatility be truly appreciated and exploited: the characteristics and limitations of the sources must be known; the basic excimer laser processes should become reasonably widely known; and problems in search of a solution should be clearly identified. Excimer Lasers covers all three of these points in an instructive and logical way. Probably for the first time, both instrumental and fundamental aspects of excimer laser interaction with matter are presented side-by-side, with examples drawn from the widest range of materials. The articles gathered here are tutorial in their nature, thus making them suitable for a wide readership, from recent graduates and postgraduate students to those established scientists entering the field, all of whom could not find a better, nor more authoritative work with which to start their reading.
High Temperature Mechanical Behavior of Ceramic Composites provides an up-to-date comprehensive coverage of the mechanical behavior of ceramic matrix composites at elevated temperatures. Topics include both short-term behavior (strength, fracture toughness and R-curve behavior) and long-term behavior (creep, creep-fatigue, delayed failure and lifetime). Emphasis is on a review of fundamentals and on the mechanics and mechanisms underlying properties. This is the first time that complete information of elevated temperature behavior of ceramic composites has ever been compacted together in a single volume. Of particular importance is that each chapter, written by internationally recognized experts, includes a substantial review component enabling the new material to be put in proper perspective. Shanti Nair is Associate Professor at the Department of Mechanical Engineering at the University of Massachusetts at Amherst. Karl Jakus is Professor at the University of Massachusetts at Amherst.