You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This work provides a how-to approach to the fundamentals, methodologies and dynamics of computational organometallic chemistry, including classical and molecular mechanics (MM), quantum mechanics (QM), and hybrid MM/QM techniques. It demonstrates applications in actinide chemistry, catalysis, main group chemistry, medicine, and organic synthesis.
REVIEWS IN COMPUTATIONAL CHEMISTRY Kenny B. Lipkowitz, Raima Larter, and Thomas R. Cundari This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. TOPICS COVERED IN Volume 21 iNCLUDE AB INITIO QUANTUM SIMULATION IN SOLID STATE CHEMISTRY; MOLECULAR QUANTUM SIMILARITY; ENUMERATING MOLECULES; VARIABLE SELECTION; BIOMOLECULAR APPLICATIONS OF POISSON-BOLTZMANN METHODS; AND DATA SOURCES AND COMPUTATIONAL APPROACHES FOR GENERATING MODELS OF GENE REGULATORY NETWORKS. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry." --JOURNAL OF MOLECULAR GRAPHICS AND MODELLING "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)." --JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
VOLUME 25 Reviews in Computational Chemistry Kenny B. Lipkowitz and Thomas R. Cundari This Volume, Like Those Prior To It, Features Pedagogically Driven Reviews By Experts In Various Fields Of Computational Chemistry. Volume 25 Contains: Eight Chapters Covering The Glass Transition In Polymer Melts, Atomistic Modeling Of Friction, The Computation Of Free Volume, Structural Order And Entropy Of Liquids And Glasses, The Reactivity Of Materials At Extreme Conditions, Magnetic Properties Of Transition Metal Clusters, Multiconfigurational Quantum Methods For The Treatment Of Heavy Metals, Recursive Solutions To Large Eigenvalue Problems, And The Development And Uses Of Artificial Intelligence In ...
Computational chemistry is increasingly used in conjunction with organic, inorganic, medicinal, biological, physical, and analytical chemistry, biotechnology, materials science, and chemical physics. This series is essential in keeping those individuals involved in these fields abreast of recent developments in computational chemistry.
THIS VOLUME, LIKE THOSE PRIOR TO IT, FEATURES CHAPTERS BY EXPERTS IN VARIOUS FIELDS OF COMPUTATIONAL CHEMISTRY. TOPICS COVERED IN VOLUME 20 INCLUDE VALENCE THEORY, ITS HISTORY, FUNDAMENTALS, AND APPLICATIONS; MODELING OF SPIN-FORBIDDEN REACTIONS; CALCULATION OF THE ELECTRONIC SPECTRA OF LARGE MOLECULES; SIMULATING CHEMICAL WAVES AND PATTERNS; FUZZY SOFT-COMPUTING METHODS AND THEIR APPLICATIONS IN CHEMISTRY; AND DEVELOPMENT OF COMPUTATIONAL MODELS FOR ENZYMES, TRANSPORTERS, CHANNELS, AND RECEPTORS RELEVANT TO ADME/TOX. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry." -JOURNAL OF MOLECULAR GRAPHICS AND MODELING "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)." -JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
VOLUME 12 REVIEWS IN COMPUTATIONAL CHEMISTRY Kenny B. Lipkowitz and Donald B. Boyd HOW DOES ONE COMPUTE FREE ENERGY AND ENTROPY FROM MOLECULAR SIMULATIONS? WHAT HAPPENS WHEN SIMULATIONS ARE RUN WITH CONSTRAINTS? HOW SHOULD SIMULATIONS BE PERFORMED TO MODEL INTERFACIAL PHENOMENA? HOW IS DENSITY FUNCTIONAL THEORY USED TO SIMULATE MATERIALS? WHAT QUANTUM MECHANICAL METHODS SHOULD BE USED TO COMPUTE NONLINEAR OPTICAL PROPERTIES OF MATERIALS? WHICH PARAMETERS ARE MOST INFLUENTIAL IN A MOLECULAR SIMULATION? HOW CAN CRYSTAL STRUCTURES BE PREDICTED? TUTORIALS PROVIDING ANSWERS TO THESE QUESTIONS ARE THE FOCUS OF THIS BOOK. FROM REVIEWS OF THE SERIES "The series continues to be one of the most useful information sources." -JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 11 Reviews in Computational Chemistry Kenny B. Lipkowitz and Donald B. Boyd The Theme of this Eleventh Volume is Computer-Aided Ligand Design and Modeling of Biomolecules. A Stellar Group of Scientists from Around the World Join in this Volume to Provide Tutorials for Beginners and Experts. Chapters 1 and 2 Take A Detailed Look at De Novo Design Methodologies for Discovering New Ligands which May Become Pharmaceuticals. Chapters 3 and 4 Cover the Methods and Applications of Three-Dimensional Quantitative Structure-Activity Relationships (3D-QSAR) Currently Used in Drug Discovery. Ways to Compute the Correct Lipophilic/Hydrophilic Behavior of Molecules are Taught in Chapter 5. Chapter ...
Reviews In Computational Chemistry Martin Schoen and Sabine Klapp Kenny B. Lipkowitz and Thomas Cundari, Series Editors This volume, unlike those prior to it, consists of a single monograph covering the timely topic of confined fluids. Volume 24 features the thermodynamics of confined phases, elements of statistical thermodynamics, one-dimensional hard-rod fluids, mean-field theory, treatments of confined fluids with short-range and long-range interactions, and the statistical mechanics of disordered confined fluids. Six appendices are included, which cover the mathematical derivation of equations used throughout the book. From Reviews Of The Series "Reviews in Computational Chemistry remain...
Not only a major reference work for sale to the library market, Reviews in Computational Chemistry is now a purchase by individuals due to the explosive growth in the use of computational chemistry throughout many scientific disciplines. In an instructional and nonmathematical style, these books provide an access to computational methods often outside a researcher's area of expertise. Volumes 9 & 10 represent the next two volumes in the successful series designed to help the chemistry community keep current with the many new developments in computational techniques. Many chapters are written as tutorials to introduce the many facets of computational chemistry, including molecular modeling, computer-assisted molecular design (CAMD), quantum chemistry, molecular mechanics and dynamics, and quantitative structure-activity relationships (QSAR). The authors provide necessary background and theory, strategies for implementing the methods, pitfalls to avoid, applications, and references.
Faculties, publications and doctoral theses in departments or divisions of chemistry, chemical engineering, biochemistry and pharmaceutical and/or medicinal chemistry at universities in the United States and Canada.