Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Scanning Ion Conductance Microscopy
  • Language: en
  • Pages: 238

Scanning Ion Conductance Microscopy

This book provides a selection of recent developments in scanning ion conductance microscopy (SICM) technology and applications. In recent years, SICM has been applied in an ever-increasing number of areas in the bioanalytical sciences. SICM is based on an electrolyte-filled nanopipette with a nanometer-scale opening, over which an electric potential is applied. The induced ion current is measured, which allows to directly or indirectly quantify various physical quantities such as pipette-sample distance, ion concentration, sample elastic modulus among many others. This makes SICM well suited for applications in electrolytes - most prominently for the study of live cells. This book starts wi...

Applied Scanning Probe Methods XII
  • Language: en
  • Pages: 271

Applied Scanning Probe Methods XII

Crack initiation and growth are key issues when it comes to the mechanical reliab- ity of microelectronic devices and microelectromechanical systems (MEMS). Es- cially in organic electronics where exible substrates will play a major role these issues will become of utmost importance. It is therefore necessary to develop me- ods which in situ allow the experimental investigation of surface deformation and fracture processes in thin layers at a micro and nanometer scale. While scanning electron microscopy (SEM) might be used it is also associated with some major experimental drawbacks. First of all if polymers are investigated they usually have to be coated with a metal layer due to their comm...

Applied Scanning Probe Methods X
  • Language: en
  • Pages: 475

Applied Scanning Probe Methods X

The volumes VIII, IX and X examine the physical and technical foundation for recent progress in applied scanning probe techniques. This is the first book to summarize the state-of-the-art of this technique. The field is progressing so fast that there is a need for a set of volumes every 12 to 18 months to capture latest developments. These volumes constitute a timely comprehensive overview of SPM applications.

Applied Scanning Probe Methods VIII
  • Language: en
  • Pages: 512

Applied Scanning Probe Methods VIII

The volumes VIII, IX and X examine the physical and technical foundation for recent progress in applied scanning probe techniques. This is the first book to summarize the state-of-the-art of this technique. The field is progressing so fast that there is a need for a set of volumes every 12 to 18 months to capture latest developments. These volumes constitute a timely comprehensive overview of SPM applications.

Applied Scanning Probe Methods XI
  • Language: en
  • Pages: 281

Applied Scanning Probe Methods XI

The volumes XI, XII and XIII examine the physical and technical foundation for recent progress in applied scanning probe techniques. These volumes constitute a timely comprehensive overview of SPM applications. Real industrial applications are included.

Nanotechnology
  • Language: en
  • Pages: 389

Nanotechnology

The only reference book which discusses the usage of nanoprobes for structure determination, in an industry where miniaturisation is the main focus. Designed for newcomers as well as professionals already in the industry.

Applied Scanning Probe Methods XIII
  • Language: en
  • Pages: 284

Applied Scanning Probe Methods XIII

The volumes XI, XII and XIII examine the physical and technical foundation for recent progress in applied scanning probe techniques. The first volume came out in January 2004, the second to fourth volumes in early 2006 and the fifth to seventh volumes in late 2006. The field is progressing so fast that there is a need for a set of volumes every 12 to 18 months to capture latest developments. These volumes constitute a timely comprehensive overview of SPM applications. After introducing scanning probe microscopy, including sensor technology and tip characterization, chapters on use in various industrial applications are presented. Industrial applications span topographic and dynamical surface studies of thin-film semiconductors, polymers, paper, ceramics, and magnetic and biological materials. The chapters have been written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective.

Nanobiotechnology II
  • Language: en
  • Pages: 459

Nanobiotechnology II

This second volume on a burgeoning field retains the proven concept of the spectacularly successful first one, extending and supplementing it. Individual sections are each dedicated to nanoparticles, nanostructures and patterns, nanodevices and machines, and nanoanalytics. Essential reading for an entire generation of scientists, this authoritative survey defines one of the most important new scientific fields to have emerged for many decades.

Applied Scanning Probe Methods IX
  • Language: en
  • Pages: 436

Applied Scanning Probe Methods IX

The volumes VIII, IX and X examine the physical and technical foundation for recent progress in applied scanning probe techniques. This is the first book to summarize the state-of-the-art of this technique. The field is progressing so fast that there is a need for a set of volumes every 12 to 18 months to capture latest developments. These volumes constitute a timely and comprehensive overview of SPM applications.

Scanning Probe Microscopy of Functional Materials
  • Language: en
  • Pages: 563

Scanning Probe Microscopy of Functional Materials

The goal of this book is to provide a general overview of the rapidly developing field of novel scanning probe microscopy (SPM) techniques for characterization of a wide range of functional materials, including complex oxides, biopolymers, and semiconductors. Many recent advances in condensed matter physics and materials science, including transport mechanisms in carbon nanostructures and the role of disorder on high temperature superconductivity, would have been impossible without SPM. The unique aspect of SPM is its potential for imaging functional properties of materials as opposed to structural characterization by electron microscopy. Examples include electrical transport and magnetic, optical, and electromechanical properties. By bringing together critical reviews by leading researchers on the application of SPM to to the nanoscale characterization of functional materials properties, this book provides insight into fundamental and technological advances and future trends in key areas of nanoscience and nanotechnology.