You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Nanotechnology is the key technology of the 21st century. The possibility to exploit the structures and processes of biomolecules for novel functional materials, biosensors, bioelectronics and medical applications has created the rapidly growing field of nanobiotechnology. Designed as a broad survey of the field, this book combines contributions from bioorganic and bioinorganic chemistry, molecular biology, materials science and bioanalytics to fathom the full scope of current and future developments. It is divided into four main sections: * Interphase Systems * Protein-based Nanostructures * DNA-based Nanostructures * Nanoanalytics Each chapter describes in detail currently available methods and contains numerous references to the primary literature, making this the perfect "field guide" for chemists, biologists and materials scientists who want to explore the fascinating world of nanobiotechnology.
This second volume on a burgeoning field retains the proven concept of the spectacularly successful first one, extending and supplementing it. Individual sections are each dedicated to nanoparticles, nanostructures and patterns, nanodevices and machines, and nanoanalytics. Essential reading for an entire generation of scientists, this authoritative survey defines one of the most important new scientific fields to have emerged for many decades.
Gazing into crystal balls is beyond the expertise of most scientists. Yet, as we look further into the 21st century, one does not have to be Nostradamus to predict that the current genomics and proteomics "revolution" will have an immense impact on medical bacteriology. This impact is already being re- ized in many academic departments, and although encroachment on routine diagnostic bacteriology, particularly in the hospital setting, is likely to occur at a slower pace, it remains nonetheless inevitable. Therefore, it is important that no one working in bacteriology should find themselves distanced from these fundamental developments. The involvement of all clinical bacteriologists is essen...
Cells possess a wealth of posttranscriptional control mechanisms that impact on every conceivable aspect of the life of an mRNA. These processes are intimately intertwined in an almost baroque manner, where promoter context influences the recruitment of splicing factors, where the majority of pre-mRNAs undergo alternative splicing, and where proteins deposited during nuclear processing impact distal cytoplasmic processing, translation, and decay. If there is a unifying theme to mRNA Processing and Metabolism: Methods and Protocols, it is that mRNA processing and metabolism are integrated processes. Many of the techniques used to study mRNA have been described in a previous volume of this ser...
Containing more than 2600 references and over 550 equations, drawings, tables, photographs, and micrographs, This book describes hierarchical assemblies in biology and biological processes that occur at the nanoscale across membranes and at interfaces. It covers recurrent themes in nanocolloid science, including self-assembly, construction of supramolecular architecture, nanoconfinement and compartmentalization, measurement and control of interfacial forces, novel synthetic materials, and computer simulation. The authors reviews surface forces apparatus measurements of two-dimensional organized ensembles at solid-liquid interfaces.
Nanotechnology has grown in its use and adoption across sectors. In particular, the medical field has identified the vast opportunities nanotechnology presents, especially for earlier disease detection and diagnosis versus traditional methods. Integrating Biologically-Inspired Nanotechnology into Medical Practice presents the latest research on nanobiotechnology and its application as a real-world healthcare solution. Emphasizing applications of micro-scale technologies in the areas of oncology, food science, and pharmacology, this reference publication is an essential resource for medical professionals, researchers, chemists, and graduate-level students in the medical and pharmaceutical sciences.
As the mysteries stored in our DNA have been more completely revealed, scientists have begun to face the extraordinary challenge of unraveling the int- cate network of protein–protein interactions established by that DNA fra- work. It is increasingly clear that proteins continuously interact with one another in a highly regulated fashion to determine cell fate, such as proliferation, diff- entiation, or death. These protein–protein interactions enable and exert str- gent control over DNA replication, RNA transcription, protein translation, macromolecular assembly and degradation, and signal transduction; essentially all cellular functions involve protein–protein interactions. Thus, pro...
Patch Clamp Methods and Protocols surveys the typical patch clamp applications and advises scientists on identifying problems and selecting the best technique in each instance. The experiments described require a basic level of electrophysiological training and aid the researcher in pursuing new areas of electrophysiology and using the patch clamp technique effectively. Patch Clamp Methods and Protocols is divided into three sections that cover the major areas of patch clamp application: Pharmacology, Physiology, and Biophysics. The first section provides examples and step by step instructions on how to use whole-cell and single-channel patch clamp methods for testing drugs in industrial set...
Flow cytometry has evolved since the 1940s into a multidisciplinary field incorporating aspects of laser technology, fluid dynamics, electronics, optics, computer science, physics, chemistry, biology, and mathematics. Innovations in instrumentation, development of small lasers, discovery of new fluorochromes/fluorescent proteins, and implementation of novel methodologies have all contributed to the recent rapid expansion of flow cytometry applications. In this thoroughly revised and updated second edition of Flow Cytometry Protocols, time-proven as well as cutting-edge methods are clearly and comprehensively presented by leading experimentalists. In addition to being a valuable reference man...
Nanoscale science and computing is becoming a major research area as today's scientists try to understand the processes of natural and biomolecular computing. The field is concerned with the architectures and design of molecular self-assembly, nanostructures and molecular devices, and with understanding and exploiting the computational processes of biomolecules in nature. This book offers a unique and authoritative perspective on current research in nanoscale science, engineering and computing. Leading researchers cover the topics of DNA self-assembly in two-dimensional arrays and three-dimensional structures, molecular motors, DNA word design, molecular electronics, gene assembly, surface layer protein assembly, and membrane computing. The book is suitable for academic and industrial scientists and engineers working in nanoscale science, in particular researchers engaged with the idea of computing at a molecular level.