Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Generalized Additive Models
  • Language: en
  • Pages: 356

Generalized Additive Models

  • Type: Book
  • -
  • Published: 2017-10-19
  • -
  • Publisher: Routledge

This book describes an array of power tools for data analysis that are based on nonparametric regression and smoothing techniques. These methods relax the linear assumption of many standard models and allow analysts to uncover structure in the data that might otherwise have been missed. While McCullagh and Nelder's Generalized Linear Models shows how to extend the usual linear methodology to cover analysis of a range of data types, Generalized Additive Models enhances this methodology even further by incorporating the flexibility of nonparametric regression. Clear prose, exercises in each chapter, and case studies enhance this popular text.

Generalized Additive Models
  • Language: en
  • Pages: 352

Generalized Additive Models

  • Type: Book
  • -
  • Published: 2017-10-19
  • -
  • Publisher: Routledge

This book describes an array of power tools for data analysis that are based on nonparametric regression and smoothing techniques. These methods relax the linear assumption of many standard models and allow analysts to uncover structure in the data that might otherwise have been missed. While McCullagh and Nelder's Generalized Linear Models shows how to extend the usual linear methodology to cover analysis of a range of data types, Generalized Additive Models enhances this methodology even further by incorporating the flexibility of nonparametric regression. Clear prose, exercises in each chapter, and case studies enhance this popular text.

Statistical Models in S
  • Language: en
  • Pages: 542

Statistical Models in S

  • Type: Book
  • -
  • Published: 2017-11-01
  • -
  • Publisher: Routledge

Statistical Models in S extends the S language to fit and analyze a variety of statistical models, including analysis of variance, generalized linear models, additive models, local regression, and tree-based models. The contributions of the ten authors-most of whom work in the statistics research department at AT&T Bell Laboratories-represent results of research in both the computational and statistical aspects of modeling data.

The Elements of Statistical Learning
  • Language: en
  • Pages: 545

The Elements of Statistical Learning

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, wi...

Statistical Learning with Sparsity
  • Language: en
  • Pages: 354

Statistical Learning with Sparsity

  • Type: Book
  • -
  • Published: 2015-05-07
  • -
  • Publisher: CRC Press

Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl

Computational Statistics
  • Language: en
  • Pages: 496

Computational Statistics

This new edition continues to serve as a comprehensive guide to modern and classical methods of statistical computing. The book is comprised of four main parts spanning the field: Optimization Integration and Simulation Bootstrapping Density Estimation and Smoothing Within these sections,each chapter includes a comprehensive introduction and step-by-step implementation summaries to accompany the explanations of key methods. The new edition includes updated coverage and existing topics as well as new topics such as adaptive MCMC and bootstrapping for correlated data. The book website now includes comprehensive R code for the entire book. There are extensive exercises, real examples, and helpful insights about how to use the methods in practice.

Optimality
  • Language: en
  • Pages: 366

Optimality

  • Type: Book
  • -
  • Published: 2006
  • -
  • Publisher: IMS

None

An Introduction to Statistical Learning
  • Language: en
  • Pages: 617

An Introduction to Statistical Learning

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods pr...

Mathematics & Mathematics Education
  • Language: en
  • Pages: 362

Mathematics & Mathematics Education

This volume covers a wide range of areas in mathematics and mathematics education. There is emphasis on applied mathematics, including partial differential equations, dynamical systems, and difference equations. Other areas represented include algebra and number theory, statistics, and issues in mathematics education.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)

Targeted Learning
  • Language: en
  • Pages: 628

Targeted Learning

The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the target parameter representing the scientific question of interest. This book is aimed at both statisticia...