You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Since the epochal discovery of the radical and highly toxic gas nitric oxide (NO) as a signaling molecule, two other no less toxic gases – carbon monoxide (CO) and hydrogen sulfide (H2S) – have been found to also be involved in a plethora of physiological and pathophysiological functions. The gases termed gasotransmitters play an increasingly important role in understanding how signalling into and between cells is modulated and fine-tuned. The advent of gasotransmitters has profoundly changed our way of thinking about biosynthesis, liberation, storage and action mechanisms in cellular signaling. In recent years an impressive amount of new data, distributed throughout the existing literature, has been generated. For this book the editors have recruited distinguished colleagues in the field to summarize and review important biological, pharmacological and medical functions and their implications, as well as methods for the detection of gasotransmitters.
This book surveys healthy and diseased vascular systems in a multitude of model organisms and systems. It explores a plethora of functions, characteristics, and pathologies of the vascular system such as angiogenesis, fibroblast growth factor signaling, lymphangiogenesis, junctional signaling, the extracellular matrix, vascular permeability, leukocyte extravasation, axon guidance factors, the angiopoietin system, and chronic obstructive lung disease. Following a preface from leading researcher Dr. Holger Gerhardt, the text is divided into three sections- the first examining the development of the vascular system in a variety of contexts, the second delving into its homeostatic characteristic...
Since biological tissues are unstable in an oxygen atmosphere, a great deal of effort is expended by organisms to metabolically limit or repair oxidative tissue damage. This volume of Methods in Enzymology and its companion Volume 234 present methods developed to investigate the roles of oxygen radicals and antioxidants in disease. Key Features * Generation, detection, and characterization of oxygen radicals, chemistry, biochemistry, and intermediate states of reductio* Isolation, characterization, and assay of enzymes or substrates involved in formation or removal of oxygen radical * Methods for assessing molecular, cell, and tissue damage; assays and repair of oxidative damage
The outstanding contributions to this volume are designed to shed light on some fields of cell biology and cellular pathology, including newly observed phenomena of cell-cell interactions, which might be applicable in studying the pathological process of atherosclerosis. The topics included cover: lipoproteins and lipoprotein receptors; growth factors; endocytosis and exocytosis; ONC Genes and proliferative disease; white blood cells; prostaglandins and leukotrienes; and the biology of smooth muscle and endothelium. The volume provides a complete summary of the most important developments in the field with great impact for arteriosclerosis research.
None
Over the past decades, the pathogenesis, diagnosis, treatment and prevention of cardiovascular diseases have been benefited significantly from intensive research activities. In order to provide a comprehensive “manual” in a field that has become as broad and deep as cardiovascular medicine, this volume of “Methods in Molecular Medicine” covers a wide spectrum of in vivo and in vitro techniques encompassing biochemical, pharmacological and molecular biology disciplines which are currently used to assess vascular disease progression. Each chapter included in this volume focuses on a specific vascular biology technique and describes various applications as well as caveats of these techniques. The protocols included here are described in detail, allowing beginners with little experience in the field of vascular biology to embark on new research projects.
Nitric oxide (NO) has been discovered to play a fundamental role in a number of biological phenomena. This book describes various aspects of nitric oxide biology, physiology and pharmacology. It is divided into three sections. The first part deals with the basic chemistry and enzymology of NO, thus laying a molecular basis for what follows. The middle part surveys the physiological roles of NO under normal conditions. The concluding part explores the relevance of NO to disease, both as a pathogenic factor and a therapeutic target. The book thus provides detailed information on NO biology to the reader unfamiliar with the field and represents a reference work for scientists working in an NO-related field of biomedical research. Each chapter, written by experts in their fields, gives a broad introduction followed by a comprehensive review of the current knowledge and a detailed reference list.